Upload of PPO-trained lunar lander from the course Colab
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- unit1_ppo_lunarlander_v0.zip +3 -0
- unit1_ppo_lunarlander_v0/_stable_baselines3_version +1 -0
- unit1_ppo_lunarlander_v0/data +96 -0
- unit1_ppo_lunarlander_v0/policy.optimizer.pth +3 -0
- unit1_ppo_lunarlander_v0/policy.pth +3 -0
- unit1_ppo_lunarlander_v0/pytorch_variables.pth +3 -0
- unit1_ppo_lunarlander_v0/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.14 +/- 45.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ee6ff1700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ee6ff1790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ee6ff1820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ee6ff18b0>", "_build": "<function ActorCriticPolicy._build at 0x7f8ee6ff1940>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ee6ff19d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ee6ff1a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ee6ff1af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ee6ff1b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ee6ff1c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ee6ff1ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ee6ff1d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8ee6fefe00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682290105522893751, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAITjtpvqM/NaHkO+T4Cr/rIcE88yQ1PQAAAAAAAAAAQHrWPX/kGD7InY2+NDd/vt4elr3nPqS8AAAAAAAAAAANTSI+AkqvP5arBj8MH+C+UjdFPjL2Pz4AAAAAAAAAAHPteD4cpEs+3nBevvM5gL45xYi8oh0WvQAAAAAAAAAAgKiHveYDyD7jAO67G/t8vtwLcr0exD09AAAAAAAAAADNu/k8tlkuPV6YCT1XBkW+h/iQu70B97sAAAAAAAAAALoaH75Q7r4/jSkhv2vgH777KTC+yIM7vgAAAAAAAAAAzdyGu4/+XLqCL8s6SQCTPDMSlzrIVX89AACAPwAAgD9Tpgi+OErRPOD0Yz5/bVu+LftcvUKGRbwAAAAAAAAAABqj8701b3k+XfOYPdAwiL7MvoW9rswOPQAAAAAAAAAAmiHjvTe4OD5xdos+ogrvvXQJ6DvO9nM9AAAAAAAAAAAa++E9DUoWP5AKzb1gjqS+utBwPYUYoDwAAAAAAAAAAM3ErTvaz5Y/MK0MPaIK/b7WZFg9VcvVuwAAAAAAAAAAzebAvVwHDroF79W6AvvvtXiY9DpzLfc5AAAAAAAAgD9T9RK+Uq+FuzpWgrwT65M8g2jgPE45fL0AAIA/AACAPzbcW769CfI+ARDGPdByob58vTy9X5GpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbLWHvVDQWECUhpRSlIwBbJRN6AOMAXSUR0CUzTi7TUiIdX2UKGgGaAloD0MIHCjwTj7ZbkCUhpRSlGgVTQUBaBZHQJTNUD9wWFh1fZQoaAZoCWgPQwgOSwM/Ku1wQJSGlFKUaBVNIgFoFkdAlM7QzYVZcXV9lChoBmgJaA9DCOvjoe9u03FAlIaUUpRoFU1AAWgWR0CUzxMTewcHdX2UKGgGaAloD0MIOEnzx/RgcECUhpRSlGgVTQQBaBZHQJTP4zQ/oq11fZQoaAZoCWgPQwg1mlyMgZNyQJSGlFKUaBVNAQFoFkdAlM/gqy4WlHV9lChoBmgJaA9DCO3yrQ/r0HNAlIaUUpRoFU0YAWgWR0CU0IKEFnqWdX2UKGgGaAloD0MImZtvRPdzcECUhpRSlGgVTQgBaBZHQJTQjkaMrEt1fZQoaAZoCWgPQwg+y/PgrspxQJSGlFKUaBVL4GgWR0CU0Md+5OJtdX2UKGgGaAloD0MIqTP3kDDTckCUhpRSlGgVS/toFkdAlNFhVU+9rXV9lChoBmgJaA9DCIDxDBr6QXFAlIaUUpRoFUvraBZHQJTSuTq0MPV1fZQoaAZoCWgPQwjLoNrgBGFzQJSGlFKUaBVNEgFoFkdAlNLS0BwMpnV9lChoBmgJaA9DCCgpsACmMXBAlIaUUpRoFUv4aBZHQJTTDaAWi111fZQoaAZoCWgPQwh0fR8Okh5vQJSGlFKUaBVL8WgWR0CU0xzF+/g0dX2UKGgGaAloD0MIl8lwPJ99cUCUhpRSlGgVTUMBaBZHQJTTLO3UhFF1fZQoaAZoCWgPQwgfL6TDwyhtQJSGlFKUaBVNOwFoFkdAlNNRGH58B3V9lChoBmgJaA9DCKvoD838wnBAlIaUUpRoFU0UAWgWR0CU1A0vGp++dX2UKGgGaAloD0MIJjYf1wa/cECUhpRSlGgVTUQBaBZHQJTVZEqlP8B1fZQoaAZoCWgPQwi4zVSIhytwQJSGlFKUaBVNCgFoFkdAlNWsN6PbPHV9lChoBmgJaA9DCDXvOEVHPW5AlIaUUpRoFU0eAWgWR0CU1nmozeoDdX2UKGgGaAloD0MIf1AXKRR/cUCUhpRSlGgVS+toFkdAlNaW7Bfrr3V9lChoBmgJaA9DCDL/6Ju05m9AlIaUUpRoFU0UAWgWR0CU1vcinpB5dX2UKGgGaAloD0MIm+RH/IoxcUCUhpRSlGgVTRwBaBZHQJTXMJBw++x1fZQoaAZoCWgPQwiMEvQXellyQJSGlFKUaBVL8mgWR0CU15psoDxLdX2UKGgGaAloD0MIkUdwIyUocECUhpRSlGgVTT0BaBZHQJTYwAWBSUF1fZQoaAZoCWgPQwjlQuVfS3tvQJSGlFKUaBVNCQFoFkdAlNnJ5/smfHV9lChoBmgJaA9DCMcrED2pc3BAlIaUUpRoFU0FAWgWR0CU2fZv1lGxdX2UKGgGaAloD0MI4sgDkcXTb0CUhpRSlGgVTQ0BaBZHQJTaJBSk0rN1fZQoaAZoCWgPQwgMPs3JyyFyQJSGlFKUaBVL6mgWR0CU2mDJU5uJdX2UKGgGaAloD0MIWYY41sWUckCUhpRSlGgVTSUBaBZHQJTaeo4uK4x1fZQoaAZoCWgPQwhMHHkg8hRyQJSGlFKUaBVL+WgWR0CU3FXIlt0ndX2UKGgGaAloD0MIY0FhUKatbUCUhpRSlGgVTVIBaBZHQJTccaxX4j91fZQoaAZoCWgPQwiiuONN/qpvQJSGlFKUaBVNWgFoFkdAlNyH4O+ZgHV9lChoBmgJaA9DCFVNEHWf4HJAlIaUUpRoFUvuaBZHQJTdKd/axot1fZQoaAZoCWgPQwigihu3GBxuQJSGlFKUaBVNOAFoFkdAlN6iMo+fRXV9lChoBmgJaA9DCEgbR6zFUG9AlIaUUpRoFU0RAWgWR0CU3wCOWBz4dX2UKGgGaAloD0MIG70aoLSEb0CUhpRSlGgVTRABaBZHQJTfOgoPTXt1fZQoaAZoCWgPQwiN0xBV+KVxQJSGlFKUaBVNJQFoFkdAlOBOMuOCG3V9lChoBmgJaA9DCP5hS48ms29AlIaUUpRoFU1XAWgWR0CU4Jp/wy6+dX2UKGgGaAloD0MIXr2KjE6DcECUhpRSlGgVTQ8BaBZHQJTg3SQYDT11fZQoaAZoCWgPQwitaHOc21lyQJSGlFKUaBVL92gWR0CU4VwQ176YdX2UKGgGaAloD0MIkdWtnpO/cUCUhpRSlGgVS/loFkdAlOGdm6GxlnV9lChoBmgJaA9DCJ2C/GzkM3BAlIaUUpRoFU0TAWgWR0CU9szoEB8ydX2UKGgGaAloD0MIggNauoIicUCUhpRSlGgVTSsBaBZHQJT3x6kZaV51fZQoaAZoCWgPQwigqdctArByQJSGlFKUaBVL42gWR0CU99OB19v1dX2UKGgGaAloD0MIYmcKnVe8b0CUhpRSlGgVTUgBaBZHQJT4H38GcF11fZQoaAZoCWgPQwj0hvvIrSZyQJSGlFKUaBVNMQFoFkdAlPsgLJCBw3V9lChoBmgJaA9DCLaCpiUWF3BAlIaUUpRoFU0pAWgWR0CU+7xN7BwddX2UKGgGaAloD0MIs5YC0v4TMkCUhpRSlGgVS+doFkdAlPzET101ZXV9lChoBmgJaA9DCDShSWKJS3BAlIaUUpRoFU0OAWgWR0CU/M/qPfbcdX2UKGgGaAloD0MI1nH8UOkec0CUhpRSlGgVTXgBaBZHQJT9OdFvybx1fZQoaAZoCWgPQwhHj9/b9OdLQJSGlFKUaBVL6WgWR0CU/VwQUYbbdX2UKGgGaAloD0MIK76h8FnBbUCUhpRSlGgVTTsBaBZHQJT9kBltj1B1fZQoaAZoCWgPQwiNQ/0u7EtwQJSGlFKUaBVNNAFoFkdAlP2rT2FnI3V9lChoBmgJaA9DCKosCrsoyW9AlIaUUpRoFU0XAWgWR0CU/l1p0wJxdX2UKGgGaAloD0MIuRtEa4Ujc0CUhpRSlGgVTQUBaBZHQJT+klsxfv51fZQoaAZoCWgPQwiyn8VSpHNuQJSGlFKUaBVL7mgWR0CU/715Sm65dX2UKGgGaAloD0MIZvUOt8NQbUCUhpRSlGgVTQcBaBZHQJT/4inpB5Z1fZQoaAZoCWgPQwg/NzRlJ9FuQJSGlFKUaBVNMQFoFkdAlQG8pLEk0XV9lChoBmgJaA9DCNY6cTneh3BAlIaUUpRoFUvyaBZHQJUCG1a4c3l1fZQoaAZoCWgPQwjXGHRCqFtxQJSGlFKUaBVNPgFoFkdAlQJZBPbfxnV9lChoBmgJaA9DCGqEfqaemnJAlIaUUpRoFU2FAWgWR0CVAnTrVvuPdX2UKGgGaAloD0MI86s5QDCbRkCUhpRSlGgVTegDaBZHQJUCqdMCcPR1fZQoaAZoCWgPQwiSCI1gIwNxQJSGlFKUaBVNCAFoFkdAlQMkSh8IA3V9lChoBmgJaA9DCEbqPZUThnJAlIaUUpRoFUvoaBZHQJUDMj0L+gl1fZQoaAZoCWgPQwjRyr3ArOBKQJSGlFKUaBVL1GgWR0CVA2FGoaUBdX2UKGgGaAloD0MIb7plh3icckCUhpRSlGgVS+BoFkdAlQNgpKBd2XV9lChoBmgJaA9DCFjmrbrOJ3JAlIaUUpRoFU0DAWgWR0CVBItOEdvLdX2UKGgGaAloD0MIuMt+3SkXckCUhpRSlGgVTTUBaBZHQJUFDvXsgMd1fZQoaAZoCWgPQwip+L8jqpFtQJSGlFKUaBVNAwFoFkdAlQVpG8VYZHV9lChoBmgJaA9DCOIGfH7YSnFAlIaUUpRoFU1BAWgWR0CVBdFOfukUdX2UKGgGaAloD0MIVyJQ/YPubUCUhpRSlGgVS/loFkdAlQZAzUI9knV9lChoBmgJaA9DCH6MuWuJw3BAlIaUUpRoFU0uAWgWR0CVBki0fHPvdX2UKGgGaAloD0MIukvirEjvcECUhpRSlGgVTToBaBZHQJUIC5H3Del1fZQoaAZoCWgPQwj3Bl+YjJ9xQJSGlFKUaBVNAwFoFkdAlQhF9a2Wp3V9lChoBmgJaA9DCO0rD9LTgXFAlIaUUpRoFUv6aBZHQJUIlq1w5vN1fZQoaAZoCWgPQwjQJ/IkabJwQJSGlFKUaBVNBQFoFkdAlQj9hmXgL3V9lChoBmgJaA9DCJrpXif1tG1AlIaUUpRoFUv+aBZHQJUJlQKrq+t1fZQoaAZoCWgPQwhlprT+1mNyQJSGlFKUaBVL+2gWR0CVCcggow23dX2UKGgGaAloD0MIPZl/9M2sa0CUhpRSlGgVTSEBaBZHQJUKAuEmICV1fZQoaAZoCWgPQwhkIToEjnZvQJSGlFKUaBVNRQFoFkdAlQppI+W4VnV9lChoBmgJaA9DCEmERrCxsXNAlIaUUpRoFUvzaBZHQJUK44cWCVd1fZQoaAZoCWgPQwgE5iFTPsZwQJSGlFKUaBVL9WgWR0CVC86u4gA7dX2UKGgGaAloD0MIYY4ev7eLb0CUhpRSlGgVS/VoFkdAlQw9ix3V1HV9lChoBmgJaA9DCOtx32rduHBAlIaUUpRoFU1fAWgWR0CVDFtF8XvZdX2UKGgGaAloD0MIMJsAwzIncUCUhpRSlGgVTYMBaBZHQJUNEnJDE3t1fZQoaAZoCWgPQwhd4sgDUVhzQJSGlFKUaBVNCwFoFkdAlQ09i2DxsnV9lChoBmgJaA9DCF3BNuLJKXFAlIaUUpRoFU1aAWgWR0CVDge40/GEdX2UKGgGaAloD0MI8DFYceoJc0CUhpRSlGgVTUABaBZHQJUOmPkq+al1fZQoaAZoCWgPQwgg7X+AdZ9xQJSGlFKUaBVNBAFoFkdAlQ7KfjCHh3V9lChoBmgJaA9DCMhAnl3+knFAlIaUUpRoFU0UAWgWR0CVD65ZKWcCdX2UKGgGaAloD0MIECVa8jhscUCUhpRSlGgVTSQBaBZHQJUPzHFPznR1fZQoaAZoCWgPQwghIcoXNO5vQJSGlFKUaBVL+mgWR0CVEBxk/bCadX2UKGgGaAloD0MIW3o01ZOnb0CUhpRSlGgVTSgBaBZHQJUQksd1dPd1fZQoaAZoCWgPQwhOKETAIU5tQJSGlFKUaBVL6WgWR0CVEMWhAWzodX2UKGgGaAloD0MISZ2AJkLecUCUhpRSlGgVTScBaBZHQJUREVM23rl1fZQoaAZoCWgPQwgucHmsmahxQJSGlFKUaBVNMAFoFkdAlRIWMsH0LHV9lChoBmgJaA9DCBaKdD/nJnBAlIaUUpRoFU0LAWgWR0CVEo+mFajfdX2UKGgGaAloD0MILCl3n6OlcECUhpRSlGgVS/toFkdAlRK0BbOeKHV9lChoBmgJaA9DCDgR/dr6gHJAlIaUUpRoFU1YAWgWR0CVEr29tdiVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.14102972677307, "std_reward": 45.10631172778931, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-23T23:25:22.937911"}
|
unit1_ppo_lunarlander_v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcbe5f72097f1a3141025b975e19d9f75bf014a26f8777c51da0b22fe71ea94d
|
3 |
+
size 147499
|
unit1_ppo_lunarlander_v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
unit1_ppo_lunarlander_v0/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ee6ff1700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ee6ff1790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ee6ff1820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ee6ff18b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8ee6ff1940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8ee6ff19d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ee6ff1a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ee6ff1af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8ee6ff1b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ee6ff1c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ee6ff1ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ee6ff1d30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8ee6fefe00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682290105522893751,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAITjtpvqM/NaHkO+T4Cr/rIcE88yQ1PQAAAAAAAAAAQHrWPX/kGD7InY2+NDd/vt4elr3nPqS8AAAAAAAAAAANTSI+AkqvP5arBj8MH+C+UjdFPjL2Pz4AAAAAAAAAAHPteD4cpEs+3nBevvM5gL45xYi8oh0WvQAAAAAAAAAAgKiHveYDyD7jAO67G/t8vtwLcr0exD09AAAAAAAAAADNu/k8tlkuPV6YCT1XBkW+h/iQu70B97sAAAAAAAAAALoaH75Q7r4/jSkhv2vgH777KTC+yIM7vgAAAAAAAAAAzdyGu4/+XLqCL8s6SQCTPDMSlzrIVX89AACAPwAAgD9Tpgi+OErRPOD0Yz5/bVu+LftcvUKGRbwAAAAAAAAAABqj8701b3k+XfOYPdAwiL7MvoW9rswOPQAAAAAAAAAAmiHjvTe4OD5xdos+ogrvvXQJ6DvO9nM9AAAAAAAAAAAa++E9DUoWP5AKzb1gjqS+utBwPYUYoDwAAAAAAAAAAM3ErTvaz5Y/MK0MPaIK/b7WZFg9VcvVuwAAAAAAAAAAzebAvVwHDroF79W6AvvvtXiY9DpzLfc5AAAAAAAAgD9T9RK+Uq+FuzpWgrwT65M8g2jgPE45fL0AAIA/AACAPzbcW769CfI+ARDGPdByob58vTy9X5GpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVYxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbLWHvVDQWECUhpRSlIwBbJRN6AOMAXSUR0CUzTi7TUiIdX2UKGgGaAloD0MIHCjwTj7ZbkCUhpRSlGgVTQUBaBZHQJTNUD9wWFh1fZQoaAZoCWgPQwgOSwM/Ku1wQJSGlFKUaBVNIgFoFkdAlM7QzYVZcXV9lChoBmgJaA9DCOvjoe9u03FAlIaUUpRoFU1AAWgWR0CUzxMTewcHdX2UKGgGaAloD0MIOEnzx/RgcECUhpRSlGgVTQQBaBZHQJTP4zQ/oq11fZQoaAZoCWgPQwg1mlyMgZNyQJSGlFKUaBVNAQFoFkdAlM/gqy4WlHV9lChoBmgJaA9DCO3yrQ/r0HNAlIaUUpRoFU0YAWgWR0CU0IKEFnqWdX2UKGgGaAloD0MImZtvRPdzcECUhpRSlGgVTQgBaBZHQJTQjkaMrEt1fZQoaAZoCWgPQwg+y/PgrspxQJSGlFKUaBVL4GgWR0CU0Md+5OJtdX2UKGgGaAloD0MIqTP3kDDTckCUhpRSlGgVS/toFkdAlNFhVU+9rXV9lChoBmgJaA9DCIDxDBr6QXFAlIaUUpRoFUvraBZHQJTSuTq0MPV1fZQoaAZoCWgPQwjLoNrgBGFzQJSGlFKUaBVNEgFoFkdAlNLS0BwMpnV9lChoBmgJaA9DCCgpsACmMXBAlIaUUpRoFUv4aBZHQJTTDaAWi111fZQoaAZoCWgPQwh0fR8Okh5vQJSGlFKUaBVL8WgWR0CU0xzF+/g0dX2UKGgGaAloD0MIl8lwPJ99cUCUhpRSlGgVTUMBaBZHQJTTLO3UhFF1fZQoaAZoCWgPQwgfL6TDwyhtQJSGlFKUaBVNOwFoFkdAlNNRGH58B3V9lChoBmgJaA9DCKvoD838wnBAlIaUUpRoFU0UAWgWR0CU1A0vGp++dX2UKGgGaAloD0MIJjYf1wa/cECUhpRSlGgVTUQBaBZHQJTVZEqlP8B1fZQoaAZoCWgPQwi4zVSIhytwQJSGlFKUaBVNCgFoFkdAlNWsN6PbPHV9lChoBmgJaA9DCDXvOEVHPW5AlIaUUpRoFU0eAWgWR0CU1nmozeoDdX2UKGgGaAloD0MIf1AXKRR/cUCUhpRSlGgVS+toFkdAlNaW7Bfrr3V9lChoBmgJaA9DCDL/6Ju05m9AlIaUUpRoFU0UAWgWR0CU1vcinpB5dX2UKGgGaAloD0MIm+RH/IoxcUCUhpRSlGgVTRwBaBZHQJTXMJBw++x1fZQoaAZoCWgPQwiMEvQXellyQJSGlFKUaBVL8mgWR0CU15psoDxLdX2UKGgGaAloD0MIkUdwIyUocECUhpRSlGgVTT0BaBZHQJTYwAWBSUF1fZQoaAZoCWgPQwjlQuVfS3tvQJSGlFKUaBVNCQFoFkdAlNnJ5/smfHV9lChoBmgJaA9DCMcrED2pc3BAlIaUUpRoFU0FAWgWR0CU2fZv1lGxdX2UKGgGaAloD0MI4sgDkcXTb0CUhpRSlGgVTQ0BaBZHQJTaJBSk0rN1fZQoaAZoCWgPQwgMPs3JyyFyQJSGlFKUaBVL6mgWR0CU2mDJU5uJdX2UKGgGaAloD0MIWYY41sWUckCUhpRSlGgVTSUBaBZHQJTaeo4uK4x1fZQoaAZoCWgPQwhMHHkg8hRyQJSGlFKUaBVL+WgWR0CU3FXIlt0ndX2UKGgGaAloD0MIY0FhUKatbUCUhpRSlGgVTVIBaBZHQJTccaxX4j91fZQoaAZoCWgPQwiiuONN/qpvQJSGlFKUaBVNWgFoFkdAlNyH4O+ZgHV9lChoBmgJaA9DCFVNEHWf4HJAlIaUUpRoFUvuaBZHQJTdKd/axot1fZQoaAZoCWgPQwigihu3GBxuQJSGlFKUaBVNOAFoFkdAlN6iMo+fRXV9lChoBmgJaA9DCEgbR6zFUG9AlIaUUpRoFU0RAWgWR0CU3wCOWBz4dX2UKGgGaAloD0MIG70aoLSEb0CUhpRSlGgVTRABaBZHQJTfOgoPTXt1fZQoaAZoCWgPQwiN0xBV+KVxQJSGlFKUaBVNJQFoFkdAlOBOMuOCG3V9lChoBmgJaA9DCP5hS48ms29AlIaUUpRoFU1XAWgWR0CU4Jp/wy6+dX2UKGgGaAloD0MIXr2KjE6DcECUhpRSlGgVTQ8BaBZHQJTg3SQYDT11fZQoaAZoCWgPQwitaHOc21lyQJSGlFKUaBVL92gWR0CU4VwQ176YdX2UKGgGaAloD0MIkdWtnpO/cUCUhpRSlGgVS/loFkdAlOGdm6GxlnV9lChoBmgJaA9DCJ2C/GzkM3BAlIaUUpRoFU0TAWgWR0CU9szoEB8ydX2UKGgGaAloD0MIggNauoIicUCUhpRSlGgVTSsBaBZHQJT3x6kZaV51fZQoaAZoCWgPQwigqdctArByQJSGlFKUaBVL42gWR0CU99OB19v1dX2UKGgGaAloD0MIYmcKnVe8b0CUhpRSlGgVTUgBaBZHQJT4H38GcF11fZQoaAZoCWgPQwj0hvvIrSZyQJSGlFKUaBVNMQFoFkdAlPsgLJCBw3V9lChoBmgJaA9DCLaCpiUWF3BAlIaUUpRoFU0pAWgWR0CU+7xN7BwddX2UKGgGaAloD0MIs5YC0v4TMkCUhpRSlGgVS+doFkdAlPzET101ZXV9lChoBmgJaA9DCDShSWKJS3BAlIaUUpRoFU0OAWgWR0CU/M/qPfbcdX2UKGgGaAloD0MI1nH8UOkec0CUhpRSlGgVTXgBaBZHQJT9OdFvybx1fZQoaAZoCWgPQwhHj9/b9OdLQJSGlFKUaBVL6WgWR0CU/VwQUYbbdX2UKGgGaAloD0MIK76h8FnBbUCUhpRSlGgVTTsBaBZHQJT9kBltj1B1fZQoaAZoCWgPQwiNQ/0u7EtwQJSGlFKUaBVNNAFoFkdAlP2rT2FnI3V9lChoBmgJaA9DCKosCrsoyW9AlIaUUpRoFU0XAWgWR0CU/l1p0wJxdX2UKGgGaAloD0MIuRtEa4Ujc0CUhpRSlGgVTQUBaBZHQJT+klsxfv51fZQoaAZoCWgPQwiyn8VSpHNuQJSGlFKUaBVL7mgWR0CU/715Sm65dX2UKGgGaAloD0MIZvUOt8NQbUCUhpRSlGgVTQcBaBZHQJT/4inpB5Z1fZQoaAZoCWgPQwg/NzRlJ9FuQJSGlFKUaBVNMQFoFkdAlQG8pLEk0XV9lChoBmgJaA9DCNY6cTneh3BAlIaUUpRoFUvyaBZHQJUCG1a4c3l1fZQoaAZoCWgPQwjXGHRCqFtxQJSGlFKUaBVNPgFoFkdAlQJZBPbfxnV9lChoBmgJaA9DCGqEfqaemnJAlIaUUpRoFU2FAWgWR0CVAnTrVvuPdX2UKGgGaAloD0MI86s5QDCbRkCUhpRSlGgVTegDaBZHQJUCqdMCcPR1fZQoaAZoCWgPQwiSCI1gIwNxQJSGlFKUaBVNCAFoFkdAlQMkSh8IA3V9lChoBmgJaA9DCEbqPZUThnJAlIaUUpRoFUvoaBZHQJUDMj0L+gl1fZQoaAZoCWgPQwjRyr3ArOBKQJSGlFKUaBVL1GgWR0CVA2FGoaUBdX2UKGgGaAloD0MIb7plh3icckCUhpRSlGgVS+BoFkdAlQNgpKBd2XV9lChoBmgJaA9DCFjmrbrOJ3JAlIaUUpRoFU0DAWgWR0CVBItOEdvLdX2UKGgGaAloD0MIuMt+3SkXckCUhpRSlGgVTTUBaBZHQJUFDvXsgMd1fZQoaAZoCWgPQwip+L8jqpFtQJSGlFKUaBVNAwFoFkdAlQVpG8VYZHV9lChoBmgJaA9DCOIGfH7YSnFAlIaUUpRoFU1BAWgWR0CVBdFOfukUdX2UKGgGaAloD0MIVyJQ/YPubUCUhpRSlGgVS/loFkdAlQZAzUI9knV9lChoBmgJaA9DCH6MuWuJw3BAlIaUUpRoFU0uAWgWR0CVBki0fHPvdX2UKGgGaAloD0MIukvirEjvcECUhpRSlGgVTToBaBZHQJUIC5H3Del1fZQoaAZoCWgPQwj3Bl+YjJ9xQJSGlFKUaBVNAwFoFkdAlQhF9a2Wp3V9lChoBmgJaA9DCO0rD9LTgXFAlIaUUpRoFUv6aBZHQJUIlq1w5vN1fZQoaAZoCWgPQwjQJ/IkabJwQJSGlFKUaBVNBQFoFkdAlQj9hmXgL3V9lChoBmgJaA9DCJrpXif1tG1AlIaUUpRoFUv+aBZHQJUJlQKrq+t1fZQoaAZoCWgPQwhlprT+1mNyQJSGlFKUaBVL+2gWR0CVCcggow23dX2UKGgGaAloD0MIPZl/9M2sa0CUhpRSlGgVTSEBaBZHQJUKAuEmICV1fZQoaAZoCWgPQwhkIToEjnZvQJSGlFKUaBVNRQFoFkdAlQppI+W4VnV9lChoBmgJaA9DCEmERrCxsXNAlIaUUpRoFUvzaBZHQJUK44cWCVd1fZQoaAZoCWgPQwgE5iFTPsZwQJSGlFKUaBVL9WgWR0CVC86u4gA7dX2UKGgGaAloD0MIYY4ev7eLb0CUhpRSlGgVS/VoFkdAlQw9ix3V1HV9lChoBmgJaA9DCOtx32rduHBAlIaUUpRoFU1fAWgWR0CVDFtF8XvZdX2UKGgGaAloD0MIMJsAwzIncUCUhpRSlGgVTYMBaBZHQJUNEnJDE3t1fZQoaAZoCWgPQwhd4sgDUVhzQJSGlFKUaBVNCwFoFkdAlQ09i2DxsnV9lChoBmgJaA9DCF3BNuLJKXFAlIaUUpRoFU1aAWgWR0CVDge40/GEdX2UKGgGaAloD0MI8DFYceoJc0CUhpRSlGgVTUABaBZHQJUOmPkq+al1fZQoaAZoCWgPQwgg7X+AdZ9xQJSGlFKUaBVNBAFoFkdAlQ7KfjCHh3V9lChoBmgJaA9DCMhAnl3+knFAlIaUUpRoFU0UAWgWR0CVD65ZKWcCdX2UKGgGaAloD0MIECVa8jhscUCUhpRSlGgVTSQBaBZHQJUPzHFPznR1fZQoaAZoCWgPQwghIcoXNO5vQJSGlFKUaBVL+mgWR0CVEBxk/bCadX2UKGgGaAloD0MIW3o01ZOnb0CUhpRSlGgVTSgBaBZHQJUQksd1dPd1fZQoaAZoCWgPQwhOKETAIU5tQJSGlFKUaBVL6WgWR0CVEMWhAWzodX2UKGgGaAloD0MISZ2AJkLecUCUhpRSlGgVTScBaBZHQJUREVM23rl1fZQoaAZoCWgPQwgucHmsmahxQJSGlFKUaBVNMAFoFkdAlRIWMsH0LHV9lChoBmgJaA9DCBaKdD/nJnBAlIaUUpRoFU0LAWgWR0CVEo+mFajfdX2UKGgGaAloD0MILCl3n6OlcECUhpRSlGgVS/toFkdAlRK0BbOeKHV9lChoBmgJaA9DCDgR/dr6gHJAlIaUUpRoFU1YAWgWR0CVEr29tdiVdWUu"
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"n_steps": 1024,
|
60 |
+
"gamma": 0.999,
|
61 |
+
"gae_lambda": 0.98,
|
62 |
+
"ent_coef": 0.01,
|
63 |
+
"vf_coef": 0.5,
|
64 |
+
"max_grad_norm": 0.5,
|
65 |
+
"batch_size": 64,
|
66 |
+
"n_epochs": 4,
|
67 |
+
"clip_range": {
|
68 |
+
":type:": "<class 'function'>",
|
69 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
70 |
+
},
|
71 |
+
"clip_range_vf": null,
|
72 |
+
"normalize_advantage": true,
|
73 |
+
"target_kl": null,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
76 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
77 |
+
"dtype": "float32",
|
78 |
+
"_shape": [
|
79 |
+
8
|
80 |
+
],
|
81 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
82 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
83 |
+
"bounded_below": "[False False False False False False False False]",
|
84 |
+
"bounded_above": "[False False False False False False False False]",
|
85 |
+
"_np_random": null
|
86 |
+
},
|
87 |
+
"action_space": {
|
88 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
89 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
90 |
+
"n": 4,
|
91 |
+
"_shape": [],
|
92 |
+
"dtype": "int64",
|
93 |
+
"_np_random": null
|
94 |
+
},
|
95 |
+
"n_envs": 16
|
96 |
+
}
|
unit1_ppo_lunarlander_v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29ac34be3bffb26a6e2059e8296e5a5ac3819a0d3f1146432a1dbf18aa151fd
|
3 |
+
size 88057
|
unit1_ppo_lunarlander_v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73e30d46ddcc8b47bf78589579acd4ef105c2575ab78cd0423a2c665c4b2e061
|
3 |
+
size 43329
|
unit1_ppo_lunarlander_v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
unit1_ppo_lunarlander_v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|