Initial commit
Browse files- A2C-PandaReachDense-v3.zip +3 -0
- A2C-PandaReachDense-v3/_stable_baselines3_version +1 -0
- A2C-PandaReachDense-v3/data +97 -0
- A2C-PandaReachDense-v3/policy.optimizer.pth +3 -0
- A2C-PandaReachDense-v3/policy.pth +3 -0
- A2C-PandaReachDense-v3/pytorch_variables.pth +3 -0
- A2C-PandaReachDense-v3/system_info.txt +9 -0
- README.md +37 -3
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
A2C-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d72cf3843058a3bbf281b440b5ba54a220e0e1058b6d17bc34b39511a5cbb8eb
|
3 |
+
size 111392
|
A2C-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
A2C-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b4b1a7081f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b4b1a6f6440>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1732786633379743610,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGhqzPXHy5T4uXCE/svuLPpqSCrs51tw+uq0Tv01rkL6Qq6u/X0qBP+GA2L7VDl8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnmfIuz8oRD+WNs8/55Gyv2hzKT8XeaQ+OmFPPcA1eb28yoe/YXbTP38yer/Yiqe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAaGrM9cfLlPi5cIT96V9g+uc/TP3X8lT+y+4s+mpIKuznW3D5QdfM+g0qdu8BPxT66rRO/TWuQvpCrq7+dcvO+RE7vvnJ7i79fSoE/4YDYvtUOXz5G25s/2cLLv1Ymn7+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.08745213 0.4491153 0.6303128 ]\n [ 0.27340466 -0.00211445 0.4313219 ]\n [-0.5768696 -0.28206864 -1.3411732 ]\n [ 1.0100821 -0.42285827 0.21783002]]",
|
34 |
+
"desired_goal": "[[-0.00611587 0.7662391 1.6188533 ]\n [-1.3950776 0.6619172 0.32123634]\n [ 0.05062983 -0.06084228 -1.0608745 ]\n [ 1.6520501 -0.977333 -1.3089247 ]]",
|
35 |
+
"observation": "[[ 0.08745213 0.4491153 0.6303128 0.4225424 1.6547767 1.1717669 ]\n [ 0.27340466 -0.00211445 0.4313219 0.4755044 -0.00480014 0.38537407]\n [-0.5768696 -0.28206864 -1.3411732 -0.4754838 -0.467394 -1.0897048 ]\n [ 1.0100821 -0.42285827 0.21783002 1.2176292 -1.5918838 -1.2433574 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvIOvvHpmrr35rjs+5MMgPfQyDr596u89mj14PYJQlr2qAZc+0k6JPdR8mz39uFQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.02142512 -0.0851564 0.18328466]\n [ 0.03924932 -0.13886625 0.11714647]\n [ 0.06060562 -0.07339574 0.29493457]\n [ 0.06704487 0.07592168 0.20773692]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9u8lHBk7OqMAWyUSwSMAXSUR0CgWSbnxJ/YdX2UKGgGR7+Y/7iyY5T7aAdLAWgIR0CgWNxyGSIQdX2UKGgGR7/RX/HYHxBmaAdLA2gIR0CgWJipFTegdX2UKGgGR7/f/ub7TDwZaAdLBGgIR0CgWFdqDbrUdX2UKGgGR7/RY/Vy3kPuaAdLA2gIR0CgWOm+CbtrdX2UKGgGR7/APaL4vexfaAdLAmgIR0CgWKKNIbwSdX2UKGgGR7/UDRtxdY4iaAdLBGgIR0CgWTg7gbZOdX2UKGgGR7+jsfJV81GcaAdLAWgIR0CgWKZHNHH4dX2UKGgGR7/PaJyhi9ZiaAdLA2gIR0CgWGKwIMScdX2UKGgGR7/ABikO7QLNaAdLAmgIR0CgWT8qWkaddX2UKGgGR7/V/u9eyAx0aAdLBGgIR0CgWPonjQzDdX2UKGgGR7/SyiEg4ffXaAdLA2gIR0CgWLMNDtw8dX2UKGgGR7/ANzbN8ma6aAdLAmgIR0CgWGxYzSCwdX2UKGgGR7+/iXIEKVpsaAdLAmgIR0CgWUjz7MxHdX2UKGgGR7+Wjj7yhBZ7aAdLAWgIR0CgWP500WM1dX2UKGgGR7+hqubI91U3aAdLAWgIR0CgWLdlNDc/dX2UKGgGR7+zsZ5zHS4OaAdLAmgIR0CgWQWFWXC1dX2UKGgGR7/SsXizcAR1aAdLA2gIR0CgWVPhybQUdX2UKGgGR7/MWDYh+vyLaAdLA2gIR0CgWMIpQUHqdX2UKGgGR7/fa1kUbkwOaAdLBGgIR0CgWHt+kP+XdX2UKGgGR7+9uEVWS2YwaAdLAmgIR0CgWQ+KjzqbdX2UKGgGR792MS9M9KVZaAdLAWgIR0CgWIFLnLaFdX2UKGgGR7+9FmWdEsreaAdLAmgIR0CgWIgnDziCdX2UKGgGR7/Z10T101ZUaAdLBGgIR0CgWWSon8badX2UKGgGR7/Q6ySmqHXVaAdLA2gIR0CgWRocR15jdX2UKGgGR7/dlwcYIjW1aAdLBGgIR0CgWNMI3R5UdX2UKGgGR7/BRE4NqgyuaAdLAmgIR0CgWW5dnkDIdX2UKGgGR7/AbgjyFwkxaAdLAmgIR0CgWNyQPqcFdX2UKGgGR7/SaKUFB6a9aAdLA2gIR0CgWJW/ag27dX2UKGgGR7/OSPEKmbb2aAdLA2gIR0CgWSeZof0VdX2UKGgGR7+iekHlfZ27aAdLAWgIR0CgWOCY9gWrdX2UKGgGR7/OWiUPhAGCaAdLA2gIR0CgWXmXPZ7HdX2UKGgGR7/Q1YhdMTN/aAdLA2gIR0CgWKDye7L/dX2UKGgGR7+pWRzRx95RaAdLAWgIR0CgWX1/MGHIdX2UKGgGR7/Pp9JBgNPQaAdLA2gIR0CgWTMByS3cdX2UKGgGR7/UoyKvV3EAaAdLBGgIR0CgWPFXA/LUdX2UKGgGR7/EN2ki2UjcaAdLAmgIR0CgWYbnPmgbdX2UKGgGR7/SuB+WnjyXaAdLA2gIR0CgWK30f5k9dX2UKGgGR7/RxnFo+OfeaAdLA2gIR0CgWT/rSmZWdX2UKGgGR7/AjRD1GsmwaAdLAmgIR0CgWLUbkwN9dX2UKGgGR7/QK28Zk079aAdLA2gIR0CgWZGgi/widX2UKGgGR7+0dHUc4o7WaAdLAmgIR0CgWUcKohpydX2UKGgGR7/Z2i+L3sX0aAdLBGgIR0CgWP/4h2W6dX2UKGgGR7/FGcWj4593aAdLAmgIR0CgWVDGLk0adX2UKGgGR7/UQbuMMqjKaAdLA2gIR0CgWMLYf4h2dX2UKGgGR7/J59E1EVnFaAdLA2gIR0CgWZ9gnc+JdX2UKGgGR7/MSV4X40uUaAdLA2gIR0CgWQ2a+evqdX2UKGgGR7+h5eJHiFTOaAdLAWgIR0CgWaM0P6KtdX2UKGgGR7/CAlOXVsk6aAdLAmgIR0CgWMqPGQ0XdX2UKGgGR7/UDFId2gWaaAdLA2gIR0CgWVzi0fHQdX2UKGgGR7+phOP/7zkIaAdLAWgIR0CgWWMQumJndX2UKGgGR7/NBLPD50r9aAdLA2gIR0CgWRvwmVqvdX2UKGgGR7++g3974SHuaAdLAmgIR0CgWNUwaisXdX2UKGgGR7/HdIGyHEdeaAdLA2gIR0CgWbHf2saLdX2UKGgGR7+9GEwnH/96aAdLAmgIR0CgWSOBlMAWdX2UKGgGR7/C5uqFRHf/aAdLAmgIR0CgWNzL4etCdX2UKGgGR7/UXZGrjo6kaAdLA2gIR0CgWW7XHzYmdX2UKGgGR7/VOLR8c+7laAdLBGgIR0CgWcOkLx7RdX2UKGgGR7/P1CgK4QSSaAdLA2gIR0CgWTH+yZ8bdX2UKGgGR7/N3xFy7wrlaAdLA2gIR0CgWOtPpIMCdX2UKGgGR7/MgeRxLkCFaAdLA2gIR0CgWX01ZTybdX2UKGgGR7/R2M85jpcHaAdLA2gIR0CgWc7D/EOzdX2UKGgGR7/WBrvb48EFaAdLA2gIR0CgWTzcZccEdX2UKGgGR7/JyDIzWPLgaAdLA2gIR0CgWPZUtI07dX2UKGgGR7/TDeTFERapaAdLA2gIR0CgWYiIcinpdX2UKGgGR7+yMm4RVZLaaAdLAmgIR0CgWdkbgjyGdX2UKGgGR7+1kYoAn2IwaAdLAmgIR0CgWZJ8neBQdX2UKGgGR7/RlFc6eXiSaAdLA2gIR0CgWUtTUAktdX2UKGgGR7/TrU9ZA6dUaAdLA2gIR0CgWQST6i0wdX2UKGgGR7/H+MIeHSF5aAdLA2gIR0CgWeSiEg4fdX2UKGgGR7/CG9pRGc4HaAdLAmgIR0CgWQu2JBPbdX2UKGgGR7/KxqO938oAaAdLA2gIR0CgWZ2exwAEdX2UKGgGR7/OsA/9pAUtaAdLA2gIR0CgWVZpBX0YdX2UKGgGR7+5hG6PKdQPaAdLAmgIR0CgWacCYCyRdX2UKGgGR7/Ldk8RtgrpaAdLA2gIR0CgWRkBbOeKdX2UKGgGR7/S/bCaZx7zaAdLBGgIR0CgWfZdv864dX2UKGgGR7/JlyR0U47zaAdLA2gIR0CgWWR8lXzUdX2UKGgGR7+m63AmAskIaAdLAWgIR0CgWR3CCSRsdX2UKGgGR7/OSFoL5RCQaAdLA2gIR0CgWbOD8LrpdX2UKGgGR7/MSwGGEf1ZaAdLA2gIR0CgWgQsGxD9dX2UKGgGR7/PwMH8jzI4aAdLA2gIR0CgWXI+nqFAdX2UKGgGR7/MY2sJY1YRaAdLA2gIR0CgWSt1hb4bdX2UKGgGR7+6PEKmbb1zaAdLAmgIR0CgWgtYB/7SdX2UKGgGR7/VoPCl7+kyaAdLA2gIR0CgWcDPOY6XdX2UKGgGR7/CZa3Zwn6VaAdLAmgIR0CgWTKw6hg3dX2UKGgGR7/Td3B55Z8saAdLA2gIR0CgWX0c4o7WdX2UKGgGR7/FcCYCyQgcaAdLAmgIR0CgWTnpKSPmdX2UKGgGR7/YsK9f1HvuaAdLBGgIR0CgWhwfp2U0dX2UKGgGR7/XBBiTdLxqaAdLBGgIR0CgWdHE/B3zdX2UKGgGR7/JWMCLdepoaAdLA2gIR0CgWYqLjxTbdX2UKGgGR7/QJhvze40/aAdLA2gIR0CgWUdGRV6vdX2UKGgGR7+0DfWMCLdfaAdLAmgIR0CgWZGyxA0LdX2UKGgGR7/HvxYq5LAYaAdLA2gIR0CgWidXcQAddX2UKGgGR7/R+717IDHPaAdLA2gIR0CgWdzMRpUQdX2UKGgGR7/Ge4kNWluWaAdLA2gIR0CgWVSC4BmxdX2UKGgGR7+6vcJtzjm0aAdLAmgIR0CgWeZNoJzDdX2UKGgGR7/ZWK/EfkmyaAdLBGgIR0CgWaKjrRjSdX2UKGgGR7/Xb6xgRbr1aAdLBGgIR0CgWjgv114gdX2UKGgGR7/RZ/Tb349HaAdLA2gIR0CgWV+OfdyldX2UKGgGR7/RLw4KhL5AaAdLA2gIR0CgWfGJFb3XdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
96 |
+
}
|
97 |
+
}
|
A2C-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec09d54e35f0d3d4a037abc6496fbb078f349397a7593e14a85974832e5d4a12
|
3 |
+
size 48456
|
A2C-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1348e1dddb54beb522b84f8b1321bbe7b5a1492dd1200aceffbfedea22f80ab5
|
3 |
+
size 46447
|
A2C-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
A2C-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024
|
2 |
+
- Python: 3.10.14
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.4.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.26.2
|
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b4b1a7081f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b4b1a6f6440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732786633379743610, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGhqzPXHy5T4uXCE/svuLPpqSCrs51tw+uq0Tv01rkL6Qq6u/X0qBP+GA2L7VDl8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnmfIuz8oRD+WNs8/55Gyv2hzKT8XeaQ+OmFPPcA1eb28yoe/YXbTP38yer/Yiqe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAaGrM9cfLlPi5cIT96V9g+uc/TP3X8lT+y+4s+mpIKuznW3D5QdfM+g0qdu8BPxT66rRO/TWuQvpCrq7+dcvO+RE7vvnJ7i79fSoE/4YDYvtUOXz5G25s/2cLLv1Ymn7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.08745213 0.4491153 0.6303128 ]\n [ 0.27340466 -0.00211445 0.4313219 ]\n [-0.5768696 -0.28206864 -1.3411732 ]\n [ 1.0100821 -0.42285827 0.21783002]]", "desired_goal": "[[-0.00611587 0.7662391 1.6188533 ]\n [-1.3950776 0.6619172 0.32123634]\n [ 0.05062983 -0.06084228 -1.0608745 ]\n [ 1.6520501 -0.977333 -1.3089247 ]]", "observation": "[[ 0.08745213 0.4491153 0.6303128 0.4225424 1.6547767 1.1717669 ]\n [ 0.27340466 -0.00211445 0.4313219 0.4755044 -0.00480014 0.38537407]\n [-0.5768696 -0.28206864 -1.3411732 -0.4754838 -0.467394 -1.0897048 ]\n [ 1.0100821 -0.42285827 0.21783002 1.2176292 -1.5918838 -1.2433574 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvIOvvHpmrr35rjs+5MMgPfQyDr596u89mj14PYJQlr2qAZc+0k6JPdR8mz39uFQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02142512 -0.0851564 0.18328466]\n [ 0.03924932 -0.13886625 0.11714647]\n [ 0.06060562 -0.07339574 0.29493457]\n [ 0.06704487 0.07592168 0.20773692]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9u8lHBk7OqMAWyUSwSMAXSUR0CgWSbnxJ/YdX2UKGgGR7+Y/7iyY5T7aAdLAWgIR0CgWNxyGSIQdX2UKGgGR7/RX/HYHxBmaAdLA2gIR0CgWJipFTegdX2UKGgGR7/f/ub7TDwZaAdLBGgIR0CgWFdqDbrUdX2UKGgGR7/RY/Vy3kPuaAdLA2gIR0CgWOm+CbtrdX2UKGgGR7/APaL4vexfaAdLAmgIR0CgWKKNIbwSdX2UKGgGR7/UDRtxdY4iaAdLBGgIR0CgWTg7gbZOdX2UKGgGR7+jsfJV81GcaAdLAWgIR0CgWKZHNHH4dX2UKGgGR7/PaJyhi9ZiaAdLA2gIR0CgWGKwIMScdX2UKGgGR7/ABikO7QLNaAdLAmgIR0CgWT8qWkaddX2UKGgGR7/V/u9eyAx0aAdLBGgIR0CgWPonjQzDdX2UKGgGR7/SyiEg4ffXaAdLA2gIR0CgWLMNDtw8dX2UKGgGR7/ANzbN8ma6aAdLAmgIR0CgWGxYzSCwdX2UKGgGR7+/iXIEKVpsaAdLAmgIR0CgWUjz7MxHdX2UKGgGR7+Wjj7yhBZ7aAdLAWgIR0CgWP500WM1dX2UKGgGR7+hqubI91U3aAdLAWgIR0CgWLdlNDc/dX2UKGgGR7+zsZ5zHS4OaAdLAmgIR0CgWQWFWXC1dX2UKGgGR7/SsXizcAR1aAdLA2gIR0CgWVPhybQUdX2UKGgGR7/MWDYh+vyLaAdLA2gIR0CgWMIpQUHqdX2UKGgGR7/fa1kUbkwOaAdLBGgIR0CgWHt+kP+XdX2UKGgGR7+9uEVWS2YwaAdLAmgIR0CgWQ+KjzqbdX2UKGgGR792MS9M9KVZaAdLAWgIR0CgWIFLnLaFdX2UKGgGR7+9FmWdEsreaAdLAmgIR0CgWIgnDziCdX2UKGgGR7/Z10T101ZUaAdLBGgIR0CgWWSon8badX2UKGgGR7/Q6ySmqHXVaAdLA2gIR0CgWRocR15jdX2UKGgGR7/dlwcYIjW1aAdLBGgIR0CgWNMI3R5UdX2UKGgGR7/BRE4NqgyuaAdLAmgIR0CgWW5dnkDIdX2UKGgGR7/AbgjyFwkxaAdLAmgIR0CgWNyQPqcFdX2UKGgGR7/SaKUFB6a9aAdLA2gIR0CgWJW/ag27dX2UKGgGR7/OSPEKmbb2aAdLA2gIR0CgWSeZof0VdX2UKGgGR7+iekHlfZ27aAdLAWgIR0CgWOCY9gWrdX2UKGgGR7/OWiUPhAGCaAdLA2gIR0CgWXmXPZ7HdX2UKGgGR7/Q1YhdMTN/aAdLA2gIR0CgWKDye7L/dX2UKGgGR7+pWRzRx95RaAdLAWgIR0CgWX1/MGHIdX2UKGgGR7/Pp9JBgNPQaAdLA2gIR0CgWTMByS3cdX2UKGgGR7/UoyKvV3EAaAdLBGgIR0CgWPFXA/LUdX2UKGgGR7/EN2ki2UjcaAdLAmgIR0CgWYbnPmgbdX2UKGgGR7/SuB+WnjyXaAdLA2gIR0CgWK30f5k9dX2UKGgGR7/RxnFo+OfeaAdLA2gIR0CgWT/rSmZWdX2UKGgGR7/AjRD1GsmwaAdLAmgIR0CgWLUbkwN9dX2UKGgGR7/QK28Zk079aAdLA2gIR0CgWZGgi/widX2UKGgGR7+0dHUc4o7WaAdLAmgIR0CgWUcKohpydX2UKGgGR7/Z2i+L3sX0aAdLBGgIR0CgWP/4h2W6dX2UKGgGR7/FGcWj4593aAdLAmgIR0CgWVDGLk0adX2UKGgGR7/UQbuMMqjKaAdLA2gIR0CgWMLYf4h2dX2UKGgGR7/J59E1EVnFaAdLA2gIR0CgWZ9gnc+JdX2UKGgGR7/MSV4X40uUaAdLA2gIR0CgWQ2a+evqdX2UKGgGR7+h5eJHiFTOaAdLAWgIR0CgWaM0P6KtdX2UKGgGR7/CAlOXVsk6aAdLAmgIR0CgWMqPGQ0XdX2UKGgGR7/UDFId2gWaaAdLA2gIR0CgWVzi0fHQdX2UKGgGR7+phOP/7zkIaAdLAWgIR0CgWWMQumJndX2UKGgGR7/NBLPD50r9aAdLA2gIR0CgWRvwmVqvdX2UKGgGR7++g3974SHuaAdLAmgIR0CgWNUwaisXdX2UKGgGR7/HdIGyHEdeaAdLA2gIR0CgWbHf2saLdX2UKGgGR7+9GEwnH/96aAdLAmgIR0CgWSOBlMAWdX2UKGgGR7/C5uqFRHf/aAdLAmgIR0CgWNzL4etCdX2UKGgGR7/UXZGrjo6kaAdLA2gIR0CgWW7XHzYmdX2UKGgGR7/VOLR8c+7laAdLBGgIR0CgWcOkLx7RdX2UKGgGR7/P1CgK4QSSaAdLA2gIR0CgWTH+yZ8bdX2UKGgGR7/N3xFy7wrlaAdLA2gIR0CgWOtPpIMCdX2UKGgGR7/MgeRxLkCFaAdLA2gIR0CgWX01ZTybdX2UKGgGR7/R2M85jpcHaAdLA2gIR0CgWc7D/EOzdX2UKGgGR7/WBrvb48EFaAdLA2gIR0CgWTzcZccEdX2UKGgGR7/JyDIzWPLgaAdLA2gIR0CgWPZUtI07dX2UKGgGR7/TDeTFERapaAdLA2gIR0CgWYiIcinpdX2UKGgGR7+yMm4RVZLaaAdLAmgIR0CgWdkbgjyGdX2UKGgGR7+1kYoAn2IwaAdLAmgIR0CgWZJ8neBQdX2UKGgGR7/RlFc6eXiSaAdLA2gIR0CgWUtTUAktdX2UKGgGR7/TrU9ZA6dUaAdLA2gIR0CgWQST6i0wdX2UKGgGR7/H+MIeHSF5aAdLA2gIR0CgWeSiEg4fdX2UKGgGR7/CG9pRGc4HaAdLAmgIR0CgWQu2JBPbdX2UKGgGR7/KxqO938oAaAdLA2gIR0CgWZ2exwAEdX2UKGgGR7/OsA/9pAUtaAdLA2gIR0CgWVZpBX0YdX2UKGgGR7+5hG6PKdQPaAdLAmgIR0CgWacCYCyRdX2UKGgGR7/Ldk8RtgrpaAdLA2gIR0CgWRkBbOeKdX2UKGgGR7/S/bCaZx7zaAdLBGgIR0CgWfZdv864dX2UKGgGR7/JlyR0U47zaAdLA2gIR0CgWWR8lXzUdX2UKGgGR7+m63AmAskIaAdLAWgIR0CgWR3CCSRsdX2UKGgGR7/OSFoL5RCQaAdLA2gIR0CgWbOD8LrpdX2UKGgGR7/MSwGGEf1ZaAdLA2gIR0CgWgQsGxD9dX2UKGgGR7/PwMH8jzI4aAdLA2gIR0CgWXI+nqFAdX2UKGgGR7/MY2sJY1YRaAdLA2gIR0CgWSt1hb4bdX2UKGgGR7+6PEKmbb1zaAdLAmgIR0CgWgtYB/7SdX2UKGgGR7/VoPCl7+kyaAdLA2gIR0CgWcDPOY6XdX2UKGgGR7/CZa3Zwn6VaAdLAmgIR0CgWTKw6hg3dX2UKGgGR7/Td3B55Z8saAdLA2gIR0CgWX0c4o7WdX2UKGgGR7/FcCYCyQgcaAdLAmgIR0CgWTnpKSPmdX2UKGgGR7/YsK9f1HvuaAdLBGgIR0CgWhwfp2U0dX2UKGgGR7/XBBiTdLxqaAdLBGgIR0CgWdHE/B3zdX2UKGgGR7/JWMCLdepoaAdLA2gIR0CgWYqLjxTbdX2UKGgGR7/QJhvze40/aAdLA2gIR0CgWUdGRV6vdX2UKGgGR7+0DfWMCLdfaAdLAmgIR0CgWZGyxA0LdX2UKGgGR7/HvxYq5LAYaAdLA2gIR0CgWidXcQAddX2UKGgGR7/R+717IDHPaAdLA2gIR0CgWdzMRpUQdX2UKGgGR7/Ge4kNWluWaAdLA2gIR0CgWVSC4BmxdX2UKGgGR7+6vcJtzjm0aAdLAmgIR0CgWeZNoJzDdX2UKGgGR7/ZWK/EfkmyaAdLBGgIR0CgWaKjrRjSdX2UKGgGR7/Xb6xgRbr1aAdLBGgIR0CgWjgv114gdX2UKGgGR7/RZ/Tb349HaAdLA2gIR0CgWV+OfdyldX2UKGgGR7/RLw4KhL5AaAdLA2gIR0CgWfGJFb3XdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.1.0", "PyTorch": "2.4.0", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (670 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22000260865315796, "std_reward": 0.1130002650709999, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-28T10:30:43.577189"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1168e52985204d02d62ae14d7f1972fa279f2ea7c11d44f172aa17833e305a54
|
3 |
+
size 2636
|