--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - arrow metrics: - accuracy model-index: - name: tcg-magic-classifier results: - task: name: Image Classification type: image-classification dataset: name: acidtib/tcg-magic-cards type: arrow config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.25452380952380954 --- # tcg-magic-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the acidtib/tcg-magic-cards dataset. It achieves the following results on the evaluation set: - Loss: 7.9836 - Accuracy: 0.2545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 420 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 8.3148 | 1.0 | 488 | 8.2632 | 0.0055 | | 8.1958 | 2.0 | 976 | 8.1519 | 0.0598 | | 8.089 | 3.0 | 1464 | 8.0596 | 0.1567 | | 8.0208 | 4.0 | 1952 | 8.0033 | 0.2276 | | 7.983 | 5.0 | 2440 | 7.9836 | 0.2545 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1