Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.16 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b6aa1b0ccb4007b5af76f2efa605b88e28acd0654389291b7ed502194d26f1c
|
3 |
+
size 108251
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f86f024d1b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f86f0237c80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1700138325711472549,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMB6SPoyiizkfPeM+RM12v08XuD8y1qm/9INWP1Vs3b4667k+MB6SPoyiizkfPeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVbz9PcAAED80ILI/eIOav5FsXD/CGGa/h4qHP9xjur94hYE+/FEFv/pRNL8St3G/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwHpI+jKKLOR894z6v1PI+nXWDu874wz5EzXa/Txe4PzLWqb8KC1+/kT+DP4lfb7/0g1Y/VWzdvjrruT5IbZM/NujGvx/XjT0wHpI+jKKLOR894z6v1PI+nXWDu874wz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 2.8538656e-01 2.6633253e-04 4.4382569e-01]\n [-9.6406960e-01 1.4382113e+00 -1.3268492e+00]\n [ 8.3795094e-01 -4.3246713e-01 3.6312276e-01]\n [ 2.8538656e-01 2.6633253e-04 4.4382569e-01]]",
|
34 |
+
"desired_goal": "[[ 0.12389437 0.56251144 1.3916078 ]\n [-1.2071371 0.8610316 -0.8988153 ]\n [ 1.058915 -1.4561725 0.2529714 ]\n [-0.52078223 -0.70437586 -0.9441997 ]]",
|
35 |
+
"observation": "[[ 2.8538656e-01 2.6633253e-04 4.4382569e-01 4.7427890e-01\n -4.0118233e-03 3.8275760e-01]\n [-9.6406960e-01 1.4382113e+00 -1.3268492e+00 -8.7126219e-01\n 1.0253774e+00 -9.3505150e-01]\n [ 8.3795094e-01 -4.3246713e-01 3.6312276e-01 1.1517725e+00\n -1.5539615e+00 6.9257967e-02]\n [ 2.8538656e-01 2.6633253e-04 4.4382569e-01 4.7427890e-01\n -4.0118233e-03 3.8275760e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOwCXveyUUz1CaX8+6EPmPfO0Nr2lNXg9Yw1zvGkPib3k3cE9chzSvBcgAz3jQ1s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.07373091 0.05165569 0.24942496]\n [ 0.11243421 -0.04460616 0.06059803]\n [-0.01483473 -0.06692392 0.0946615 ]\n [-0.02564833 0.03201303 0.21412615]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9f7uUliSaGMAWyUSwSMAXSUR0ClxqMH8jzJdX2UKGgGR7/INBF/hESeaAdLA2gIR0Clxv8nE2pAdX2UKGgGR7/NhWo3rD64aAdLA2gIR0ClxtIIWxhVdX2UKGgGR7+9M/QjUutfaAdLAmgIR0Clxqv9LpRodX2UKGgGR7/PwXqJMxoJaAdLA2gIR0ClxnV2A5JcdX2UKGgGR7/H8tPHktEoaAdLA2gIR0Clxw3iJfpmdX2UKGgGR7/QCXhOxjaxaAdLBGgIR0ClxuUb961LdX2UKGgGR7/Sl7MPjGT+aAdLA2gIR0ClxrsewLVndX2UKGgGR7/WOTaCcwxnaAdLBGgIR0Clxoi6pYLcdX2UKGgGR7/HsIE8q4H5aAdLA2gIR0ClxxrOzIFNdX2UKGgGR7/DhESdvsJIaAdLAmgIR0ClxsPZZjhDdX2UKGgGR7/FEd/8VHnVaAdLA2gIR0ClxvSg5BC2dX2UKGgGR7/APUaya/h3aAdLAmgIR0Clxs4m9g4PdX2UKGgGR7/MLNOdoWYXaAdLA2gIR0ClxymKyfL+dX2UKGgGR79vOlfqoqCpaAdLAWgIR0ClxtJItlI3dX2UKGgGR7/S8rqdH2AYaAdLBGgIR0ClxpwBYFJQdX2UKGgGR7/MaJhvze41aAdLA2gIR0ClxwDawljWdX2UKGgGR7/QPoFFDv3KaAdLA2gIR0ClxziCrcTKdX2UKGgGR7/Maef7JnxsaAdLA2gIR0ClxuEnCwbEdX2UKGgGR7/Qe4Cp3os7aAdLA2gIR0ClxqrGR3eOdX2UKGgGR7/QlQdjoZAIaAdLA2gIR0Clxw+iaiK0dX2UKGgGR7+z5P/JeVs2aAdLAmgIR0ClxunssxwidX2UKGgGR7/CVfu1F6RhaAdLAmgIR0ClxrNhE0BPdX2UKGgGR7/QQqI7/4qPaAdLA2gIR0Clx0V8kUsWdX2UKGgGR7+U4BFNL128aAdLAWgIR0Clx0niNsFddX2UKGgGR7/bQkX1rZanaAdLBGgIR0ClxyLtu1nedX2UKGgGR7/QuUliSaE0aAdLA2gIR0Clxvj81n/UdX2UKGgGR7/N4593KSxJaAdLA2gIR0ClxsLFGXoldX2UKGgGR7+plQMx46fbaAdLAWgIR0ClxyeKsMiKdX2UKGgGR7/Svb48EFGHaAdLA2gIR0Clx1iqhlDndX2UKGgGR7+hVKf4AS39aAdLAWgIR0ClxyuGKyfMdX2UKGgGR7/DJeVs1sLwaAdLAmgIR0ClxzRptaZAdX2UKGgGR7/bN0vGp++eaAdLBGgIR0Clxwq5TZQIdX2UKGgGR7/YgTyrgflqaAdLBGgIR0ClxtRpDeCTdX2UKGgGR7/erKvFFUhnaAdLBGgIR0Clx241gpjMdX2UKGgGR7/ACxNZeRgaaAdLAmgIR0ClxuCPIXCTdX2UKGgGR7/Is/6fra/RaAdLA2gIR0Clx0XXI2fkdX2UKGgGR7/UafjCHh0haAdLBGgIR0ClxyBbGFSLdX2UKGgGR7/KydnTRYzSaAdLA2gIR0Clxu3Ov+wUdX2UKGgGR7/V7jkuHvc8aAdLBGgIR0Clx4KOLiuMdX2UKGgGR7/cCe2/i5uqaAdLBGgIR0Clx1lr2xptdX2UKGgGR7/KwxnFo+OfaAdLA2gIR0Clxy+o99tudX2UKGgGR7/AW/JvHcUNaAdLAmgIR0Clx4tzCDVZdX2UKGgGR7/QQmNR3u/laAdLA2gIR0Clxv27nPmgdX2UKGgGR7+wMZxaPjn3aAdLAmgIR0Clx2Mpw0fpdX2UKGgGR7+5yLhrFfiQaAdLAmgIR0Clx5T/hl19dX2UKGgGR7/NaJyhi9ZiaAdLA2gIR0Clxz3BpHqedX2UKGgGR7/HtMPBi1AraAdLA2gIR0Clxw580DU3dX2UKGgGR7/EIt16mfoSaAdLAmgIR0Clx6C5d4VzdX2UKGgGR7/QnMMZxaPkaAdLA2gIR0Clx3OwosqbdX2UKGgGR7/E0uUUwi7kaAdLAmgIR0Clx0m1IAfddX2UKGgGR7/Bv5xiobXIaAdLAmgIR0ClxxdIoVmBdX2UKGgGR7+6R2bG3nZCaAdLAmgIR0Clx6l5OafBdX2UKGgGR7/AfI0ZWJaaaAdLAmgIR0Clx1IybhFWdX2UKGgGR7/HkQPI4lyBaAdLA2gIR0Clx4CnpB5YdX2UKGgGR7/UYw7DEWIoaAdLA2gIR0ClxydCE6DHdX2UKGgGR7/L/3nIQvpRaAdLA2gIR0Clx7mn4wh4dX2UKGgGR7+1iH6/IsAeaAdLAmgIR0Clx4yeAd4ndX2UKGgGR7/LPOY6XBxhaAdLA2gIR0Clx2Lh73PBdX2UKGgGR7+gHqu8scyWaAdLAWgIR0Clx5ER8MNMdX2UKGgGR7/Dqlgtvn8saAdLAmgIR0ClxzBdMTN/dX2UKGgGR7+5wAEMb3oLaAdLAmgIR0Clx8Kp97WvdX2UKGgGR7/AJrtVrAP/aAdLAmgIR0Clx824NI9UdX2UKGgGR7/O1wYLsruqaAdLA2gIR0Clx6Fy7wrldX2UKGgGR7/XlJYkmhM8aAdLBGgIR0Clx3gPd2xIdX2UKGgGR7/LWZJCjUNKaAdLA2gIR0Clx0GWD6FedX2UKGgGR7+22F36hxo7aAdLAmgIR0Clx9fYjB2wdX2UKGgGR7/COuJUHY6GaAdLAmgIR0Clx6q1PWQPdX2UKGgGR7/IPV/c32mIaAdLA2gIR0Clx032EkB0dX2UKGgGR7+4rJ8v24/eaAdLAmgIR0Clx9//WDpUdX2UKGgGR7/gX5FgDzRQaAdLBGgIR0Clx4jdgv12dX2UKGgGR7/GuyNXHR1HaAdLA2gIR0Clx7n0btJGdX2UKGgGR7++dAgPmPo3aAdLAmgIR0Clx5PvrnkldX2UKGgGR7/Q+MZP2wmmaAdLA2gIR0Clx+/YjB2wdX2UKGgGR7/b7ngYP5HmaAdLBGgIR0Clx2HtfG+9dX2UKGgGR7/G98qnWJ7+aAdLA2gIR0Clx8bF0gbIdX2UKGgGR7+LPyCnP3SKaAdLAWgIR0Clx8sIeHSGdX2UKGgGR7/KOc2BJ7LMaAdLA2gIR0Clx6FyimEXdX2UKGgGR7/ZfMOf/WDpaAdLBGgIR0ClyAM9bHIZdX2UKGgGR7/bBF/hESdwaAdLBGgIR0Clx3WV3Ux3dX2UKGgGR7/KKjSG8EmqaAdLA2gIR0Clx7DAaef7dX2UKGgGR7/Z3IuGsV+JaAdLBGgIR0Clx97dJrckdX2UKGgGR7/UmO2iL2pRaAdLA2gIR0ClyBAieNDMdX2UKGgGR7/ULaVUuL75aAdLA2gIR0Clx4IRRMvidX2UKGgGR7/N00WM0gr6aAdLA2gIR0Clx79ph4MXdX2UKGgGR7+4GOdXko4NaAdLAmgIR0ClyBra24NJdX2UKGgGR7/LbCaZx7zDaAdLA2gIR0Clx+3BHkLhdX2UKGgGR7+3ZWaMJhOQaAdLAmgIR0Clx8eDnNgSdX2UKGgGR7/OTRIBikO7aAdLA2gIR0Clx5EJ8fFKdX2UKGgGR7/AjzqbBoEkaAdLAmgIR0ClyCMxGlQ/dX2UKGgGR7/Fg0j1PFefaAdLA2gIR0Clx/myon8bdX2UKGgGR7/SOymhufmLaAdLA2gIR0Clx9YD9wWFdX2UKGgGR7/TMJhOP/70aAdLA2gIR0Clx590aIepdX2UKGgGR7/QOskpqh11aAdLA2gIR0ClyDGff4yodX2UKGgGR7+TCUHIIWxhaAdLAWgIR0Clx9osiB5HdX2UKGgGR7/R4e9zwMH9aAdLA2gIR0ClyAhFmWdFdX2UKGgGR7+2vB7/n4fwaAdLAmgIR0Clx6d8iOebdX2UKGgGR7+/L2YfGMn7aAdLAmgIR0Clx+IYm9g4dX2UKGgGR7/Tg4OtnwocaAdLA2gIR0ClyD1iWmgrdX2UKGgGR7+++yquKXOXaAdLAmgIR0Clx69lum78dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04ff68ac067d68ec3c8fef1aa33ee19f0847b777c45072b368d5e72917d8c01a
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56dd3d93deca85d12169bd00e379782f54410e9df9b6609466f38ac42a8a26b0
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f86f024d1b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f86f0237c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700138325711472549, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMB6SPoyiizkfPeM+RM12v08XuD8y1qm/9INWP1Vs3b4667k+MB6SPoyiizkfPeM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVbz9PcAAED80ILI/eIOav5FsXD/CGGa/h4qHP9xjur94hYE+/FEFv/pRNL8St3G/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwHpI+jKKLOR894z6v1PI+nXWDu874wz5EzXa/Txe4PzLWqb8KC1+/kT+DP4lfb7/0g1Y/VWzdvjrruT5IbZM/NujGvx/XjT0wHpI+jKKLOR894z6v1PI+nXWDu874wz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 2.8538656e-01 2.6633253e-04 4.4382569e-01]\n [-9.6406960e-01 1.4382113e+00 -1.3268492e+00]\n [ 8.3795094e-01 -4.3246713e-01 3.6312276e-01]\n [ 2.8538656e-01 2.6633253e-04 4.4382569e-01]]", "desired_goal": "[[ 0.12389437 0.56251144 1.3916078 ]\n [-1.2071371 0.8610316 -0.8988153 ]\n [ 1.058915 -1.4561725 0.2529714 ]\n [-0.52078223 -0.70437586 -0.9441997 ]]", "observation": "[[ 2.8538656e-01 2.6633253e-04 4.4382569e-01 4.7427890e-01\n -4.0118233e-03 3.8275760e-01]\n [-9.6406960e-01 1.4382113e+00 -1.3268492e+00 -8.7126219e-01\n 1.0253774e+00 -9.3505150e-01]\n [ 8.3795094e-01 -4.3246713e-01 3.6312276e-01 1.1517725e+00\n -1.5539615e+00 6.9257967e-02]\n [ 2.8538656e-01 2.6633253e-04 4.4382569e-01 4.7427890e-01\n -4.0118233e-03 3.8275760e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOwCXveyUUz1CaX8+6EPmPfO0Nr2lNXg9Yw1zvGkPib3k3cE9chzSvBcgAz3jQ1s+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07373091 0.05165569 0.24942496]\n [ 0.11243421 -0.04460616 0.06059803]\n [-0.01483473 -0.06692392 0.0946615 ]\n [-0.02564833 0.03201303 0.21412615]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9f7uUliSaGMAWyUSwSMAXSUR0ClxqMH8jzJdX2UKGgGR7/INBF/hESeaAdLA2gIR0Clxv8nE2pAdX2UKGgGR7/NhWo3rD64aAdLA2gIR0ClxtIIWxhVdX2UKGgGR7+9M/QjUutfaAdLAmgIR0Clxqv9LpRodX2UKGgGR7/PwXqJMxoJaAdLA2gIR0ClxnV2A5JcdX2UKGgGR7/H8tPHktEoaAdLA2gIR0Clxw3iJfpmdX2UKGgGR7/QCXhOxjaxaAdLBGgIR0ClxuUb961LdX2UKGgGR7/Sl7MPjGT+aAdLA2gIR0ClxrsewLVndX2UKGgGR7/WOTaCcwxnaAdLBGgIR0Clxoi6pYLcdX2UKGgGR7/HsIE8q4H5aAdLA2gIR0ClxxrOzIFNdX2UKGgGR7/DhESdvsJIaAdLAmgIR0ClxsPZZjhDdX2UKGgGR7/FEd/8VHnVaAdLA2gIR0ClxvSg5BC2dX2UKGgGR7/APUaya/h3aAdLAmgIR0Clxs4m9g4PdX2UKGgGR7/MLNOdoWYXaAdLA2gIR0ClxymKyfL+dX2UKGgGR79vOlfqoqCpaAdLAWgIR0ClxtJItlI3dX2UKGgGR7/S8rqdH2AYaAdLBGgIR0ClxpwBYFJQdX2UKGgGR7/MaJhvze41aAdLA2gIR0ClxwDawljWdX2UKGgGR7/QPoFFDv3KaAdLA2gIR0ClxziCrcTKdX2UKGgGR7/Maef7JnxsaAdLA2gIR0ClxuEnCwbEdX2UKGgGR7/Qe4Cp3os7aAdLA2gIR0ClxqrGR3eOdX2UKGgGR7/QlQdjoZAIaAdLA2gIR0Clxw+iaiK0dX2UKGgGR7+z5P/JeVs2aAdLAmgIR0ClxunssxwidX2UKGgGR7/CVfu1F6RhaAdLAmgIR0ClxrNhE0BPdX2UKGgGR7/QQqI7/4qPaAdLA2gIR0Clx0V8kUsWdX2UKGgGR7+U4BFNL128aAdLAWgIR0Clx0niNsFddX2UKGgGR7/bQkX1rZanaAdLBGgIR0ClxyLtu1nedX2UKGgGR7/QuUliSaE0aAdLA2gIR0Clxvj81n/UdX2UKGgGR7/N4593KSxJaAdLA2gIR0ClxsLFGXoldX2UKGgGR7+plQMx46fbaAdLAWgIR0ClxyeKsMiKdX2UKGgGR7/Svb48EFGHaAdLA2gIR0Clx1iqhlDndX2UKGgGR7+hVKf4AS39aAdLAWgIR0ClxyuGKyfMdX2UKGgGR7/DJeVs1sLwaAdLAmgIR0ClxzRptaZAdX2UKGgGR7/bN0vGp++eaAdLBGgIR0Clxwq5TZQIdX2UKGgGR7/YgTyrgflqaAdLBGgIR0ClxtRpDeCTdX2UKGgGR7/erKvFFUhnaAdLBGgIR0Clx241gpjMdX2UKGgGR7/ACxNZeRgaaAdLAmgIR0ClxuCPIXCTdX2UKGgGR7/Is/6fra/RaAdLA2gIR0Clx0XXI2fkdX2UKGgGR7/UafjCHh0haAdLBGgIR0ClxyBbGFSLdX2UKGgGR7/KydnTRYzSaAdLA2gIR0Clxu3Ov+wUdX2UKGgGR7/V7jkuHvc8aAdLBGgIR0Clx4KOLiuMdX2UKGgGR7/cCe2/i5uqaAdLBGgIR0Clx1lr2xptdX2UKGgGR7/KwxnFo+OfaAdLA2gIR0Clxy+o99tudX2UKGgGR7/AW/JvHcUNaAdLAmgIR0Clx4tzCDVZdX2UKGgGR7/QQmNR3u/laAdLA2gIR0Clxv27nPmgdX2UKGgGR7+wMZxaPjn3aAdLAmgIR0Clx2Mpw0fpdX2UKGgGR7+5yLhrFfiQaAdLAmgIR0Clx5T/hl19dX2UKGgGR7/NaJyhi9ZiaAdLA2gIR0Clxz3BpHqedX2UKGgGR7/HtMPBi1AraAdLA2gIR0Clxw580DU3dX2UKGgGR7/EIt16mfoSaAdLAmgIR0Clx6C5d4VzdX2UKGgGR7/QnMMZxaPkaAdLA2gIR0Clx3OwosqbdX2UKGgGR7/E0uUUwi7kaAdLAmgIR0Clx0m1IAfddX2UKGgGR7/Bv5xiobXIaAdLAmgIR0ClxxdIoVmBdX2UKGgGR7+6R2bG3nZCaAdLAmgIR0Clx6l5OafBdX2UKGgGR7/AfI0ZWJaaaAdLAmgIR0Clx1IybhFWdX2UKGgGR7/HkQPI4lyBaAdLA2gIR0Clx4CnpB5YdX2UKGgGR7/UYw7DEWIoaAdLA2gIR0ClxydCE6DHdX2UKGgGR7/L/3nIQvpRaAdLA2gIR0Clx7mn4wh4dX2UKGgGR7+1iH6/IsAeaAdLAmgIR0Clx4yeAd4ndX2UKGgGR7/LPOY6XBxhaAdLA2gIR0Clx2Lh73PBdX2UKGgGR7+gHqu8scyWaAdLAWgIR0Clx5ER8MNMdX2UKGgGR7/Dqlgtvn8saAdLAmgIR0ClxzBdMTN/dX2UKGgGR7+5wAEMb3oLaAdLAmgIR0Clx8Kp97WvdX2UKGgGR7/AJrtVrAP/aAdLAmgIR0Clx824NI9UdX2UKGgGR7/O1wYLsruqaAdLA2gIR0Clx6Fy7wrldX2UKGgGR7/XlJYkmhM8aAdLBGgIR0Clx3gPd2xIdX2UKGgGR7/LWZJCjUNKaAdLA2gIR0Clx0GWD6FedX2UKGgGR7+22F36hxo7aAdLAmgIR0Clx9fYjB2wdX2UKGgGR7/COuJUHY6GaAdLAmgIR0Clx6q1PWQPdX2UKGgGR7/IPV/c32mIaAdLA2gIR0Clx032EkB0dX2UKGgGR7+4rJ8v24/eaAdLAmgIR0Clx9//WDpUdX2UKGgGR7/gX5FgDzRQaAdLBGgIR0Clx4jdgv12dX2UKGgGR7/GuyNXHR1HaAdLA2gIR0Clx7n0btJGdX2UKGgGR7++dAgPmPo3aAdLAmgIR0Clx5PvrnkldX2UKGgGR7/Q+MZP2wmmaAdLA2gIR0Clx+/YjB2wdX2UKGgGR7/b7ngYP5HmaAdLBGgIR0Clx2HtfG+9dX2UKGgGR7/G98qnWJ7+aAdLA2gIR0Clx8bF0gbIdX2UKGgGR7+LPyCnP3SKaAdLAWgIR0Clx8sIeHSGdX2UKGgGR7/KOc2BJ7LMaAdLA2gIR0Clx6FyimEXdX2UKGgGR7/ZfMOf/WDpaAdLBGgIR0ClyAM9bHIZdX2UKGgGR7/bBF/hESdwaAdLBGgIR0Clx3WV3Ux3dX2UKGgGR7/KKjSG8EmqaAdLA2gIR0Clx7DAaef7dX2UKGgGR7/Z3IuGsV+JaAdLBGgIR0Clx97dJrckdX2UKGgGR7/UmO2iL2pRaAdLA2gIR0ClyBAieNDMdX2UKGgGR7/ULaVUuL75aAdLA2gIR0Clx4IRRMvidX2UKGgGR7/N00WM0gr6aAdLA2gIR0Clx79ph4MXdX2UKGgGR7+4GOdXko4NaAdLAmgIR0ClyBra24NJdX2UKGgGR7/LbCaZx7zDaAdLA2gIR0Clx+3BHkLhdX2UKGgGR7+3ZWaMJhOQaAdLAmgIR0Clx8eDnNgSdX2UKGgGR7/OTRIBikO7aAdLA2gIR0Clx5EJ8fFKdX2UKGgGR7/AjzqbBoEkaAdLAmgIR0ClyCMxGlQ/dX2UKGgGR7/Fg0j1PFefaAdLA2gIR0Clx/myon8bdX2UKGgGR7/SOymhufmLaAdLA2gIR0Clx9YD9wWFdX2UKGgGR7/TMJhOP/70aAdLA2gIR0Clx590aIepdX2UKGgGR7/QOskpqh11aAdLA2gIR0ClyDGff4yodX2UKGgGR7+TCUHIIWxhaAdLAWgIR0Clx9osiB5HdX2UKGgGR7/R4e9zwMH9aAdLA2gIR0ClyAhFmWdFdX2UKGgGR7+2vB7/n4fwaAdLAmgIR0Clx6d8iOebdX2UKGgGR7+/L2YfGMn7aAdLAmgIR0Clx+IYm9g4dX2UKGgGR7/Tg4OtnwocaAdLA2gIR0ClyD1iWmgrdX2UKGgGR7+++yquKXOXaAdLAmgIR0Clx69lum78dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (676 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.15999041637405753, "std_reward": 0.09613177797413212, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-16T13:34:31.911752"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad9d1578fbaeb5970efd8aad03e98f309d31bc13f4acea3cb56d912f1fd12c1c
|
3 |
+
size 2623
|