|
from transformers import Blip2Processor, Blip2Model |
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from transformers import pipeline |
|
import requests |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
""" |
|
path: |
|
""" |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.processor = Blip2Processor.from_pretrained(path) |
|
self.model = Blip2Model.from_pretrained(path, torch_dtype=torch.float16) |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs", data) |
|
image_url = inputs['image_url'] |
|
image = Image.open(requests.get(image_url, stream=True).raw) |
|
processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) |
|
generated_ids = self.model.generate(**processed_image) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
return image_url, generated_text |
|
|