from transformers import Blip2Processor, Blip2Model from typing import Dict, List, Any from PIL import Image from transformers import pipeline import requests import torch class EndpointHandler(): def __init__(self, path=""): """ path: """ self.device = "cuda" if torch.cuda.is_available() else "cpu" self.processor = Blip2Processor.from_pretrained(path) self.model = Blip2Model.from_pretrained(path, torch_dtype=torch.float16) self.model.to(self.device) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) image_url = inputs['image_url'] image = Image.open(requests.get(image_url, stream=True).raw) processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) generated_ids = self.model.generate(**processed_image) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return image_url, generated_text