from transformers import Blip2Processor, Blip2ForConditionalGeneration from typing import Dict, List, Any from PIL import Image from transformers import pipeline import requests import torch class EndpointHandler(): def __init__(self, path=""): """ path: """ # Preload all the elements you are going to need at inference. # pseudo: # self.model= load_model(path) #self.processor = Blip2Processor.from_pretrained(path) self.pipeline = pipeline(model = path) self.device = "cuda" if torch.cuda.is_available() else "cpu" def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs", data) image_url = inputs['image_url'] #image = Image.open(requests.get(image_url, stream=True).raw) #processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) #generated_ids = self.pipeline(**inputs) #generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return image_url