File size: 1,710 Bytes
c9c4226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import re
from typing import Dict, List, Any
from unsloth import FastLanguageModel


class EndpointHandler():
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)

        max_seq_length = 2048
        dtype = None
        load_in_4bit = True
        self.model, self.tokenizer = FastLanguageModel.from_pretrained(
            model_name=path,  # YOUR MODEL YOU USED FOR TRAINING
            max_seq_length=max_seq_length,
            dtype=dtype,
            load_in_4bit=load_in_4bit,
        )
        FastLanguageModel.for_inference(self.model)  # Enable native 2x faster inference


    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        messages = data.pop("inputs", data)

        # messages = [
        #     {"from": "human", "value": "What is a famous tall tower in Paris?"},
        # ]
        inputs = self.tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,  # Must add for generation
            return_tensors="pt",
        ).to("cuda")

        outputs = self.model.generate(input_ids=inputs, max_new_tokens=1000, use_cache=True)
        content = self.tokenizer.batch_decode(outputs)

        pattern = r'\[INST\].*?\[/INST\]'
        content = re.sub(pattern, '', content, flags=re.DOTALL)

        content = content.replace('<s>', '').replace('</s>', '').strip()

        return content