File size: 1,844 Bytes
58d9a81
7a3cedc
 
 
 
 
 
 
 
 
58d9a81
 
7a3cedc
 
58d9a81
7a3cedc
58d9a81
7a3cedc
 
 
 
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
58d9a81
7a3cedc
 
 
 
 
 
 
 
 
 
58d9a81
7a3cedc
58d9a81
7a3cedc
 
 
 
 
 
58d9a81
 
7a3cedc
58d9a81
7a3cedc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: youngggggg/ToxiGen-ConPrompt
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: implicit-toxicgenconprompt-all-no-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# implicit-toxicgenconprompt-all-no-lora

This model is a fine-tuned version of [youngggggg/ToxiGen-ConPrompt](https://huggingface.co/youngggggg/ToxiGen-ConPrompt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8445
- Accuracy: {'accuracy': 0.8500114495076712}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy                         |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|
| 0.236         | 1.0   | 2217 | 0.4258          | {'accuracy': 0.8410808335241584} |
| 0.123         | 2.0   | 4434 | 0.5409          | {'accuracy': 0.8465765972063202} |
| 0.0585        | 3.0   | 6651 | 0.7576          | {'accuracy': 0.8477215479734371} |
| 0.0273        | 4.0   | 8868 | 0.8445          | {'accuracy': 0.8500114495076712} |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2