File size: 3,159 Bytes
35440f3 553c039 2a33eaf 1ee104d 2a33eaf 35440f3 3aa2e6e f1ca019 dee4d38 80ab7fc 0eeae5e ab87387 eac84cd b3e1eb2 5dccae3 e74cb63 2f5d1ce 74bc742 779e6a6 6c1f704 4ad15de 674b4eb 553c039 ebd9b6b 2d2535f acd9707 a774b8f 1ee104d 2a33eaf 35440f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_keras_callback
model-index:
- name: aditnnda/gacoanReviewer
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# aditnnda/gacoanReviewer
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0001
- Validation Loss: 0.5466
- Train Accuracy: 0.9163
- Epoch: 23
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2751 | 0.2043 | 0.9107 | 0 |
| 0.1202 | 0.2077 | 0.9177 | 1 |
| 0.0583 | 0.2770 | 0.9079 | 2 |
| 0.0435 | 0.3412 | 0.9066 | 3 |
| 0.0251 | 0.3762 | 0.9079 | 4 |
| 0.0208 | 0.2241 | 0.9303 | 5 |
| 0.0070 | 0.2794 | 0.9317 | 6 |
| 0.0151 | 0.3823 | 0.9219 | 7 |
| 0.0088 | 0.3740 | 0.9261 | 8 |
| 0.0019 | 0.4286 | 0.9261 | 9 |
| 0.0030 | 0.6086 | 0.8912 | 10 |
| 0.0052 | 0.4023 | 0.9344 | 11 |
| 0.0005 | 0.5193 | 0.9121 | 12 |
| 0.0002 | 0.5171 | 0.9135 | 13 |
| 0.0002 | 0.5276 | 0.9163 | 14 |
| 0.0002 | 0.5344 | 0.9135 | 15 |
| 0.0002 | 0.5362 | 0.9163 | 16 |
| 0.0001 | 0.5407 | 0.9163 | 17 |
| 0.0001 | 0.5406 | 0.9163 | 18 |
| 0.0001 | 0.5484 | 0.9149 | 19 |
| 0.0001 | 0.5406 | 0.9177 | 20 |
| 0.0001 | 0.5431 | 0.9177 | 21 |
| 0.0001 | 0.5453 | 0.9163 | 22 |
| 0.0001 | 0.5466 | 0.9163 | 23 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|