adityaaswani1 commited on
Commit
0dcbd3d
·
1 Parent(s): b0f0530

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.67 +/- 17.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd7b1b33be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd7b1b33c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd7b1b33d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd7b1b33d90>", "_build": "<function ActorCriticPolicy._build at 0x7dd7b1b33e20>", "forward": "<function ActorCriticPolicy.forward at 0x7dd7b1b33eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd7b1b33f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd7b1b38040>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd7b1b380d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd7b1b38160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd7b1b381f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd7b1b38280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd7b22bb500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699143625451954304, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3FOj5DP4s/6d3EPoSUDL/nk6w+qiE8PgAAAAAAAAAAlhdOvqPRmD+Yquq+gwkfvwP5Yr72s0C9AAAAAAAAAABNtgO+4oF5PxvvYL5SAiq/+57yvfQ2Pr0AAAAAAAAAAKZ6+L0SXaY/Q3odvxlI/777VAe+NdpPvgAAAAAAAAAAMwVQvHFJGjwd6Ds9RYgrvo/CtDzbRKq8AAAAAAAAAACAlW4+WXGQPyMVmT7HVQ6/erWKPoxjCL0AAAAAAAAAAC0yMj4maIo+KBZevp05t74VKF68zalDvAAAAAAAAAAARnQePhNNcD8CV1I+wXMCv7f9jD5KhW89AAAAAAAAAAAzS/i7FFSMuoIhZDpJVwu2mRXdugJuhLkAAIA/AACAP/M6t70fBcY4Au+LPhJqKD0C8CI89k8TPgAAgD8AAAAAQ3ugPifgPD9DU0C+HOzovm4p/z0+mSq+AAAAAAAAAAAzzRS++7E1P+YhZbzpLgq//ly3vd3w0z0AAAAAAAAAAM3E9L1PrH+8Fg2RvbxkPj0UOQC9IE0HPQAAgD8AAAAA2rbwPQ/xRj3WCym+sgMDvi2viryavJu7AAAAAAAAAADaGt29Fs9nPTXeGT50AHm+rqNUPOoyWj0AAAAAAAAAAO20eL63Vpc+wF+dPrxuzL5DO4W9ygVaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAKV8Ti84CMAWyUS9aMAXSUR0CoWd6jWTX8dX2UKGgGR0BxOLSPU8V6aAdL52gIR0CoWjLi++M7dX2UKGgGR0Bwx6jmCAc1aAdL62gIR0CoWjd7ngYQdX2UKGgGR0BzMPIBBAv+aAdNkQFoCEdAqFqHqkdmx3V9lChoBkdAb0a7JW/8EWgHS9toCEdAqFqKveP7vXV9lChoBkdAcOKdGy5ZsGgHS89oCEdAqFrlMbm2cHV9lChoBkdAcJAQOWjXWmgHS75oCEdAqFsNY6nzhHV9lChoBkdAcUHLORkmQmgHS7xoCEdAqFs3sHB1tHV9lChoBkdAcncaakRBeGgHS+5oCEdAqFtQicG1QnV9lChoBkdAcKWxmCiAUmgHS+BoCEdAqFthFTefqXV9lChoBkdAcaPEfDDTB2gHS+xoCEdAqFuWjj7yhHV9lChoBkdAcMo4S6DoQmgHS8doCEdAqFusFwDNhXV9lChoBkdAc1t4dZJTVGgHS81oCEdAqFv7J+2E03V9lChoBkdAcKCwJPZZjmgHS8doCEdAqFx0ophF3XV9lChoBkdAcCYW/ag262gHS99oCEdAqF0DMvAXVXV9lChoBkdAcGwew9q1xGgHS9ZoCEdAqF0QZTAFgXV9lChoBkdAb7EsaKk2xmgHS9FoCEdAqF1IBT4tYnV9lChoBkdAYUy5Yoy9EmgHTegDaAhHQKhdUksSTQp1fZQoaAZHQHIWAu7HyVhoB0vnaAhHQKhdkvf0mMR1fZQoaAZHQHKkHk1dgOVoB0vbaAhHQKhdrncL0Bh1fZQoaAZHQHCrkhA4XGhoB0vfaAhHQKhdvVKf4AV1fZQoaAZHQHEyLvCuU2VoB0vHaAhHQKhd3cj7hvR1fZQoaAZHQG68VhLGrCFoB0vFaAhHQKheDFZxJd11fZQoaAZHQHGcZdGAkLRoB0vhaAhHQKheEljVhCt1fZQoaAZHQHBGjl90A95oB0vGaAhHQKheRq/M4cZ1fZQoaAZHQG3g30PH1e1oB0vTaAhHQKhehLgXMyJ1fZQoaAZHQHJIbytmthdoB0vQaAhHQKhexZV4oql1fZQoaAZHQHN0LTx5LRNoB00IAWgIR0CoXsmLtNSJdX2UKGgGR0BxVhBHCoCNaAdL42gIR0CoYAXNTtLMdX2UKGgGR0Bxsh/gBLf2aAdL52gIR0CoYCPl+3H8dX2UKGgGR0BxkojUutfYaAdLt2gIR0CoYCrHMlkZdX2UKGgGR0BzAe87IT4+aAdL5GgIR0CoYFQRPGhmdX2UKGgGR0Bwm2MuOCGvaAdLyWgIR0CoYF096kZadX2UKGgGR0Bx1Ool2NedaAdL32gIR0CoYI1iWmgrdX2UKGgGR0Bwhs8FINExaAdLzGgIR0CoYNCbc45tdX2UKGgGR0ByLT9aUzKtaAdNBwFoCEdAqGDdhiLEUHV9lChoBkdAcU0vwmVqvmgHS9FoCEdAqGDreVLSNXV9lChoBkdAcgZL0z0pVmgHS+hoCEdAqGEERradtnV9lChoBkdAaXDgZTAFgWgHTbIBaAhHQKhhTEKE3851fZQoaAZHQHCkvf4yoGZoB0vRaAhHQKhhtHeaa1F1fZQoaAZHQHKLZWq94/xoB00BAWgIR0CoYc0AtFrmdX2UKGgGR0BumPDYRNAUaAdL22gIR0CoYdTjm0VrdX2UKGgGR0ByJNxS5y2haAdL9GgIR0CoYeODzyz5dX2UKGgGR0BxKnKGL1mKaAdLvmgIR0CoYrvZIxxldX2UKGgGR0BxHfdhy8zzaAdLzWgIR0CoYyCyQgcMdX2UKGgGR0By0txAB1cMaAdL2WgIR0CoYyTpHI6sdX2UKGgGR0ByAkYBNmDlaAdL5mgIR0CoYzNvXK8tdX2UKGgGR0BzEekKu0TlaAdL5GgIR0CoY3cMd92HdX2UKGgGR0ByZtRO1v2oaAdLxWgIR0CoY3ovi97GdX2UKGgGR0BuyHpKSPluaAdLvGgIR0CoY44u9OARdX2UKGgGR0Bx1hKEnLJTaAdL4mgIR0CoY59at9x7dX2UKGgGR0BvZwBLf1pTaAdLzWgIR0CoZA5DzAerdX2UKGgGR0Bx45L9MsYmaAdL72gIR0CoZBLD63y7dX2UKGgGR0Bw6bIikftAaAdL/GgIR0CoZFDYI0IkdX2UKGgGR0Bv/821lXijaAdL4GgIR0CoZMGnwXqJdX2UKGgGR0BxByCxu89PaAdL3mgIR0CoZNhLwnYydX2UKGgGR0Bwc13yI55raAdL6GgIR0CoZPHXEqDsdX2UKGgGR0ByfwMoc7yQaAdL5WgIR0CoZPztTkyUdX2UKGgGR0BwIXsu3+dcaAdLvmgIR0CoZbgxJul5dX2UKGgGR0BwnOxptaZAaAdLxGgIR0CoZcljurp8dX2UKGgGR0BxKabExZdOaAdL0mgIR0CoZgujh1kldX2UKGgGR0Bq0lWn0kGBaAdNyAJoCEdAqGYk6tDD0nV9lChoBkdAcpkyLQ5WBGgHS8ZoCEdAqGYsgfU4JnV9lChoBkdAcRefLLZBcGgHS7toCEdAqGYrIgeRxXV9lChoBkdAcg0UwBYFJWgHS/9oCEdAqGY3io86m3V9lChoBkdAcdGr9ETg22gHS9xoCEdAqGZru8brC3V9lChoBkdAcQBQ8wHqvGgHS8ZoCEdAqGavLLZBcHV9lChoBkdAcg95PuXu3WgHS85oCEdAqGbJyp71I3V9lChoBkdAcPbIeYD1XmgHS/5oCEdAqGbfl0YCQ3V9lChoBkdAcXnjHGS6lWgHS+doCEdAqGdDdk8RtnV9lChoBkdAcD1TPBzmwWgHS9FoCEdAqGd3RkVer3V9lChoBkdAbp46FuejEmgHS9hoCEdAqGeu7SRbKXV9lChoBkdAcCaIZZSvT2gHS71oCEdAqGgTifg75nV9lChoBkdAcq0aLXL/0mgHS/RoCEdAqGgYq3EycnV9lChoBkdAcr3FaB7NS2gHS8VoCEdAqGg9WKdhAnV9lChoBkdAcaXgKneiz2gHS7xoCEdAqGh+Awwj+3V9lChoBkdAclGronrpq2gHS95oCEdAqGjTeXRgJHV9lChoBkdAcmxxsVLzw2gHS9loCEdAqGjbPppvgnV9lChoBkdAchJTGHYYi2gHS+poCEdAqGkcMI/qxHV9lChoBkdAcHm46fapP2gHS95oCEdAqGk8XaakRHV9lChoBkdAbkGlP8AJcGgHS/poCEdAqGleFJxvN3V9lChoBkdAcZNIpH7P6mgHS9loCEdAqGl3t4RmLHV9lChoBkdAcrh59E1EVmgHS89oCEdAqGmMPczqKXV9lChoBkdAczVwPRRdhWgHS9xoCEdAqGmbmSyMUHV9lChoBkdAcEqb4agmJGgHS95oCEdAqGphJGvwE3V9lChoBkdAcSNkBjnV5WgHS9xoCEdAqGqoCQtBfXV9lChoBkdAcgjfcvduYWgHS9doCEdAqGrWclPac3V9lChoBkdAcRWD3dsSCmgHS8poCEdAqGsjkQwsXnV9lChoBkdAcHrj1wo9cWgHS9poCEdAqGtzGcWj5HV9lChoBkdAcI2zundfs2gHS9xoCEdAqGu2r2g3+HV9lChoBkdAcA7bHIZIhGgHS8toCEdAqGvC3iJfpnV9lChoBkdAbrkkWRA8jmgHS81oCEdAqGxSO938oHV9lChoBkdAcXlZIQOFxmgHS79oCEdAqGxsKVpsXXV9lChoBkdAcbs0oBq9G2gHS95oCEdAqGybVWjoIXV9lChoBkdAccYT+ee4C2gHS8NoCEdAqG0gBFNL13V9lChoBkdAae4gbIcR2GgHTTwCaAhHQKhtM+mFajh1fZQoaAZHQHF5Xdj5KvpoB0vRaAhHQKhtQt/4Irx1fZQoaAZHQHAoYM4LkS5oB0veaAhHQKhtWNcW0qp1fZQoaAZHQHAGVTvRZ2ZoB0vRaAhHQKhtd3V09yN1fZQoaAZHQHD5PTodMkBoB0v+aAhHQKhtvFhoduJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19658a61d17995cddcc63f845c1e3b1223ba4c62ad08013d354cd3015aa1b704
3
+ size 147933
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd7b1b33be0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd7b1b33c70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd7b1b33d00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd7b1b33d90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7dd7b1b33e20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7dd7b1b33eb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd7b1b33f40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd7b1b38040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7dd7b1b380d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd7b1b38160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd7b1b381f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd7b1b38280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7dd7b22bb500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1699143625451954304,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3FOj5DP4s/6d3EPoSUDL/nk6w+qiE8PgAAAAAAAAAAlhdOvqPRmD+Yquq+gwkfvwP5Yr72s0C9AAAAAAAAAABNtgO+4oF5PxvvYL5SAiq/+57yvfQ2Pr0AAAAAAAAAAKZ6+L0SXaY/Q3odvxlI/777VAe+NdpPvgAAAAAAAAAAMwVQvHFJGjwd6Ds9RYgrvo/CtDzbRKq8AAAAAAAAAACAlW4+WXGQPyMVmT7HVQ6/erWKPoxjCL0AAAAAAAAAAC0yMj4maIo+KBZevp05t74VKF68zalDvAAAAAAAAAAARnQePhNNcD8CV1I+wXMCv7f9jD5KhW89AAAAAAAAAAAzS/i7FFSMuoIhZDpJVwu2mRXdugJuhLkAAIA/AACAP/M6t70fBcY4Au+LPhJqKD0C8CI89k8TPgAAgD8AAAAAQ3ugPifgPD9DU0C+HOzovm4p/z0+mSq+AAAAAAAAAAAzzRS++7E1P+YhZbzpLgq//ly3vd3w0z0AAAAAAAAAAM3E9L1PrH+8Fg2RvbxkPj0UOQC9IE0HPQAAgD8AAAAA2rbwPQ/xRj3WCym+sgMDvi2viryavJu7AAAAAAAAAADaGt29Fs9nPTXeGT50AHm+rqNUPOoyWj0AAAAAAAAAAO20eL63Vpc+wF+dPrxuzL5DO4W9ygVaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAKV8Ti84CMAWyUS9aMAXSUR0CoWd6jWTX8dX2UKGgGR0BxOLSPU8V6aAdL52gIR0CoWjLi++M7dX2UKGgGR0Bwx6jmCAc1aAdL62gIR0CoWjd7ngYQdX2UKGgGR0BzMPIBBAv+aAdNkQFoCEdAqFqHqkdmx3V9lChoBkdAb0a7JW/8EWgHS9toCEdAqFqKveP7vXV9lChoBkdAcOKdGy5ZsGgHS89oCEdAqFrlMbm2cHV9lChoBkdAcJAQOWjXWmgHS75oCEdAqFsNY6nzhHV9lChoBkdAcUHLORkmQmgHS7xoCEdAqFs3sHB1tHV9lChoBkdAcncaakRBeGgHS+5oCEdAqFtQicG1QnV9lChoBkdAcKWxmCiAUmgHS+BoCEdAqFthFTefqXV9lChoBkdAcaPEfDDTB2gHS+xoCEdAqFuWjj7yhHV9lChoBkdAcMo4S6DoQmgHS8doCEdAqFusFwDNhXV9lChoBkdAc1t4dZJTVGgHS81oCEdAqFv7J+2E03V9lChoBkdAcKCwJPZZjmgHS8doCEdAqFx0ophF3XV9lChoBkdAcCYW/ag262gHS99oCEdAqF0DMvAXVXV9lChoBkdAcGwew9q1xGgHS9ZoCEdAqF0QZTAFgXV9lChoBkdAb7EsaKk2xmgHS9FoCEdAqF1IBT4tYnV9lChoBkdAYUy5Yoy9EmgHTegDaAhHQKhdUksSTQp1fZQoaAZHQHIWAu7HyVhoB0vnaAhHQKhdkvf0mMR1fZQoaAZHQHKkHk1dgOVoB0vbaAhHQKhdrncL0Bh1fZQoaAZHQHCrkhA4XGhoB0vfaAhHQKhdvVKf4AV1fZQoaAZHQHEyLvCuU2VoB0vHaAhHQKhd3cj7hvR1fZQoaAZHQG68VhLGrCFoB0vFaAhHQKheDFZxJd11fZQoaAZHQHGcZdGAkLRoB0vhaAhHQKheEljVhCt1fZQoaAZHQHBGjl90A95oB0vGaAhHQKheRq/M4cZ1fZQoaAZHQG3g30PH1e1oB0vTaAhHQKhehLgXMyJ1fZQoaAZHQHJIbytmthdoB0vQaAhHQKhexZV4oql1fZQoaAZHQHN0LTx5LRNoB00IAWgIR0CoXsmLtNSJdX2UKGgGR0BxVhBHCoCNaAdL42gIR0CoYAXNTtLMdX2UKGgGR0Bxsh/gBLf2aAdL52gIR0CoYCPl+3H8dX2UKGgGR0BxkojUutfYaAdLt2gIR0CoYCrHMlkZdX2UKGgGR0BzAe87IT4+aAdL5GgIR0CoYFQRPGhmdX2UKGgGR0Bwm2MuOCGvaAdLyWgIR0CoYF096kZadX2UKGgGR0Bx1Ool2NedaAdL32gIR0CoYI1iWmgrdX2UKGgGR0Bwhs8FINExaAdLzGgIR0CoYNCbc45tdX2UKGgGR0ByLT9aUzKtaAdNBwFoCEdAqGDdhiLEUHV9lChoBkdAcU0vwmVqvmgHS9FoCEdAqGDreVLSNXV9lChoBkdAcgZL0z0pVmgHS+hoCEdAqGEERradtnV9lChoBkdAaXDgZTAFgWgHTbIBaAhHQKhhTEKE3851fZQoaAZHQHCkvf4yoGZoB0vRaAhHQKhhtHeaa1F1fZQoaAZHQHKLZWq94/xoB00BAWgIR0CoYc0AtFrmdX2UKGgGR0BumPDYRNAUaAdL22gIR0CoYdTjm0VrdX2UKGgGR0ByJNxS5y2haAdL9GgIR0CoYeODzyz5dX2UKGgGR0BxKnKGL1mKaAdLvmgIR0CoYrvZIxxldX2UKGgGR0BxHfdhy8zzaAdLzWgIR0CoYyCyQgcMdX2UKGgGR0By0txAB1cMaAdL2WgIR0CoYyTpHI6sdX2UKGgGR0ByAkYBNmDlaAdL5mgIR0CoYzNvXK8tdX2UKGgGR0BzEekKu0TlaAdL5GgIR0CoY3cMd92HdX2UKGgGR0ByZtRO1v2oaAdLxWgIR0CoY3ovi97GdX2UKGgGR0BuyHpKSPluaAdLvGgIR0CoY44u9OARdX2UKGgGR0Bx1hKEnLJTaAdL4mgIR0CoY59at9x7dX2UKGgGR0BvZwBLf1pTaAdLzWgIR0CoZA5DzAerdX2UKGgGR0Bx45L9MsYmaAdL72gIR0CoZBLD63y7dX2UKGgGR0Bw6bIikftAaAdL/GgIR0CoZFDYI0IkdX2UKGgGR0Bv/821lXijaAdL4GgIR0CoZMGnwXqJdX2UKGgGR0BxByCxu89PaAdL3mgIR0CoZNhLwnYydX2UKGgGR0Bwc13yI55raAdL6GgIR0CoZPHXEqDsdX2UKGgGR0ByfwMoc7yQaAdL5WgIR0CoZPztTkyUdX2UKGgGR0BwIXsu3+dcaAdLvmgIR0CoZbgxJul5dX2UKGgGR0BwnOxptaZAaAdLxGgIR0CoZcljurp8dX2UKGgGR0BxKabExZdOaAdL0mgIR0CoZgujh1kldX2UKGgGR0Bq0lWn0kGBaAdNyAJoCEdAqGYk6tDD0nV9lChoBkdAcpkyLQ5WBGgHS8ZoCEdAqGYsgfU4JnV9lChoBkdAcRefLLZBcGgHS7toCEdAqGYrIgeRxXV9lChoBkdAcg0UwBYFJWgHS/9oCEdAqGY3io86m3V9lChoBkdAcdGr9ETg22gHS9xoCEdAqGZru8brC3V9lChoBkdAcQBQ8wHqvGgHS8ZoCEdAqGavLLZBcHV9lChoBkdAcg95PuXu3WgHS85oCEdAqGbJyp71I3V9lChoBkdAcPbIeYD1XmgHS/5oCEdAqGbfl0YCQ3V9lChoBkdAcXnjHGS6lWgHS+doCEdAqGdDdk8RtnV9lChoBkdAcD1TPBzmwWgHS9FoCEdAqGd3RkVer3V9lChoBkdAbp46FuejEmgHS9hoCEdAqGeu7SRbKXV9lChoBkdAcCaIZZSvT2gHS71oCEdAqGgTifg75nV9lChoBkdAcq0aLXL/0mgHS/RoCEdAqGgYq3EycnV9lChoBkdAcr3FaB7NS2gHS8VoCEdAqGg9WKdhAnV9lChoBkdAcaXgKneiz2gHS7xoCEdAqGh+Awwj+3V9lChoBkdAclGronrpq2gHS95oCEdAqGjTeXRgJHV9lChoBkdAcmxxsVLzw2gHS9loCEdAqGjbPppvgnV9lChoBkdAchJTGHYYi2gHS+poCEdAqGkcMI/qxHV9lChoBkdAcHm46fapP2gHS95oCEdAqGk8XaakRHV9lChoBkdAbkGlP8AJcGgHS/poCEdAqGleFJxvN3V9lChoBkdAcZNIpH7P6mgHS9loCEdAqGl3t4RmLHV9lChoBkdAcrh59E1EVmgHS89oCEdAqGmMPczqKXV9lChoBkdAczVwPRRdhWgHS9xoCEdAqGmbmSyMUHV9lChoBkdAcEqb4agmJGgHS95oCEdAqGphJGvwE3V9lChoBkdAcSNkBjnV5WgHS9xoCEdAqGqoCQtBfXV9lChoBkdAcgjfcvduYWgHS9doCEdAqGrWclPac3V9lChoBkdAcRWD3dsSCmgHS8poCEdAqGsjkQwsXnV9lChoBkdAcHrj1wo9cWgHS9poCEdAqGtzGcWj5HV9lChoBkdAcI2zundfs2gHS9xoCEdAqGu2r2g3+HV9lChoBkdAcA7bHIZIhGgHS8toCEdAqGvC3iJfpnV9lChoBkdAbrkkWRA8jmgHS81oCEdAqGxSO938oHV9lChoBkdAcXlZIQOFxmgHS79oCEdAqGxsKVpsXXV9lChoBkdAcbs0oBq9G2gHS95oCEdAqGybVWjoIXV9lChoBkdAccYT+ee4C2gHS8NoCEdAqG0gBFNL13V9lChoBkdAae4gbIcR2GgHTTwCaAhHQKhtM+mFajh1fZQoaAZHQHF5Xdj5KvpoB0vRaAhHQKhtQt/4Irx1fZQoaAZHQHAoYM4LkS5oB0veaAhHQKhtWNcW0qp1fZQoaAZHQHAGVTvRZ2ZoB0vRaAhHQKhtd3V09yN1fZQoaAZHQHD5PTodMkBoB0v+aAhHQKhtvFhoduJ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 350,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d817b73b1131ca825e4e6123ef8358f28bd2e43897efa9c66203b616c5e0c99
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:716e2e4df1f5d0d4f1f09ee6edda78a26ac1a27e81d999c5bd5c9d95fe3b9c81
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (150 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.669143926097, "std_reward": 17.308825161368386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-05T00:55:59.569817"}