File size: 3,722 Bytes
89caf84
 
 
 
 
 
 
 
 
 
 
cc547dd
 
89caf84
 
 
 
 
 
 
991525e
89caf84
92fec89
 
 
 
 
 
89caf84
 
 
2c29bad
 
 
89caf84
 
 
b7103de
2c29bad
9fc483d
 
 
 
 
 
 
 
 
 
 
 
2c29bad
5ec1370
2c29bad
6231e62
2c29bad
6231e62
 
 
 
 
 
 
 
 
 
 
 
 
89caf84
 
 
2c29bad
89caf84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc547dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: cnn_news_summary_model_trained_on_reduced_data
  results: []
datasets:
- abisee/cnn_dailymail
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cnn_news_summary_model_trained_on_reduced_data

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an **[cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail)** dataset.
It achieves the following results on the evaluation set:
- ***Loss***: 1.6597
- **Rouge_1**: 0.2162
- **Rouge_2**: 0.0943
- **Rouge_l**: 0.1834
- **Rouge_lsum**: 0.1834
- **Generated_Length**: 19.0

## Model description

**Base Model:** *t5-small*, which is a smaller version of the *T5 (Text-to-Text Transfer Transformer) model* developed by ***Google***.

This model can be particularly useful if you need to quickly summarize large volumes of text, making it easier to digest and understand key information.

## Intended uses & limitations

* ### Intended Use

  * The model is designed for **text summarization**, which involves condensing long pieces of text into shorter, more digestible summaries. Here are some specific use cases:

  * **News Summarization:** Quickly summarizing news articles to provide readers with the main points.
 
    
  * **Document Summarization**: Condensing lengthy reports or research papers into brief overviews.
 
    
  * **Content Curation**: Helping content creators and curators to generate summaries for newsletters, blogs, or social media posts.
 
    
  * **Educational Tools**: Assisting students and educators by summarizing academic texts and articles.

* ### Limitations

  * While the model is powerful, it does have some limitations:

  * **Accuracy**: The summaries generated might not always capture all the key points accurately, especially for complex or nuanced texts.
 
    
  * **Bias**: The model can inherit biases present in the training data, which might affect the quality and neutrality of the summaries.
 
    
  * **Context Understanding**: It might struggle with understanding the full context of very long documents, leading to incomplete or misleading summaries.
 
    
  * **Language and Style**: The model’s output might not always match the desired tone or style, requiring further editing.
 
    
  * **Data Dependency**: Performance can vary depending on the quality and nature of the input data. It performs best on data similar to its training set (news articles)

## Training and evaluation data

The model was trained using the Adam optimizer with a learning rate of **2e-05** over **2 epochs**.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:|
| No log        | 1.0   | 288  | 1.6727          | 0.217  | 0.0949 | 0.1841 | 0.1839    | 19.0             |
| 1.9118        | 2.0   | 576  | 1.6597          | 0.2162 | 0.0943 | 0.1834 | 0.1834    | 19.0             |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1