pulid-flux-adorabook / pulid /pipeline_v1_1.py
adorabook's picture
Upload 86 files
92a699d verified
import gc
import cv2
import insightface
import numpy as np
import torch
import torch.nn as nn
from basicsr.utils import img2tensor, tensor2img
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from huggingface_hub import hf_hub_download, snapshot_download
from insightface.app import FaceAnalysis
from safetensors.torch import load_file
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import normalize, resize
from eva_clip import create_model_and_transforms
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from pulid.encoders_transformer import IDFormer
from pulid.utils import is_torch2_available, sample_dpmpp_2m, sample_dpmpp_sde
if is_torch2_available():
from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor
from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor
else:
from pulid.attention_processor import AttnProcessor, IDAttnProcessor
class PuLIDPipeline:
def __init__(self, sdxl_repo='Lykon/dreamshaper-xl-lightning', sampler='dpmpp_sde', *args, **kwargs):
super().__init__()
self.device = 'cuda'
# load base model
self.pipe = StableDiffusionXLPipeline.from_pretrained(sdxl_repo, torch_dtype=torch.float16, variant="fp16").to(
self.device
)
self.pipe.watermark = None
self.hack_unet_attn_layers(self.pipe.unet)
# scheduler
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
# ID adapters
self.id_adapter = IDFormer().to(self.device)
# preprocessors
# face align and parsing
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=self.device,
)
self.face_helper.face_parse = None
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
# clip-vit backbone
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
model = model.visual
self.clip_vision_model = model.to(self.device)
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
eva_transform_mean = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
eva_transform_std = (eva_transform_std,) * 3
self.eva_transform_mean = eva_transform_mean
self.eva_transform_std = eva_transform_std
# antelopev2
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
self.app = FaceAnalysis(
name='antelopev2', root='.', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.app.prepare(ctx_id=0, det_size=(640, 640))
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx')
self.handler_ante.prepare(ctx_id=0)
gc.collect()
torch.cuda.empty_cache()
self.load_pretrain()
# other configs
self.debug_img_list = []
# karras schedule related code, borrow from lllyasviel/Omost
linear_start = 0.00085
linear_end = 0.012
timesteps = 1000
betas = torch.linspace(linear_start**0.5, linear_end**0.5, timesteps, dtype=torch.float64) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
self.log_sigmas = self.sigmas.log()
self.sigma_data = 1.0
if sampler == 'dpmpp_sde':
self.sampler = sample_dpmpp_sde
elif sampler == 'dpmpp_2m':
self.sampler = sample_dpmpp_2m
else:
raise NotImplementedError(f'sampler {sampler} not implemented')
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
log_sigma = sigma.log()
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
def get_sigmas_karras(self, n, rho=7.0):
ramp = torch.linspace(0, 1, n)
min_inv_rho = self.sigma_min ** (1 / rho)
max_inv_rho = self.sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return torch.cat([sigmas, sigmas.new_zeros([1])])
def hack_unet_attn_layers(self, unet):
id_adapter_attn_procs = {}
for name, _ in unet.attn_processors.items():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is not None:
id_adapter_attn_procs[name] = IDAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
).to(unet.device)
else:
id_adapter_attn_procs[name] = AttnProcessor()
unet.set_attn_processor(id_adapter_attn_procs)
self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values())
def load_pretrain(self):
hf_hub_download('guozinan/PuLID', 'pulid_v1.1.safetensors', local_dir='models')
ckpt_path = 'models/pulid_v1.1.safetensors'
state_dict = load_file(ckpt_path)
state_dict_dict = {}
for k, v in state_dict.items():
module = k.split('.')[0]
state_dict_dict.setdefault(module, {})
new_k = k[len(module) + 1 :]
state_dict_dict[module][new_k] = v
for module in state_dict_dict:
print(f'loading from {module}')
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
def to_gray(self, img):
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
x = x.repeat(1, 3, 1, 1)
return x
def get_id_embedding(self, image_list):
"""
Args:
image in image_list: numpy rgb image, range [0, 255]
"""
id_cond_list = []
id_vit_hidden_list = []
for ii, image in enumerate(image_list):
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# get antelopev2 embedding
face_info = self.app.get(image_bgr)
if len(face_info) > 0:
face_info = sorted(
face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1])
)[
-1
] # only use the maximum face
id_ante_embedding = face_info['embedding']
self.debug_img_list.append(
image[
int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
]
)
else:
id_ante_embedding = None
# using facexlib to detect and align face
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
raise RuntimeError('facexlib align face fail')
align_face = self.face_helper.cropped_faces[0]
# incase insightface didn't detect face
if id_ante_embedding is None:
print('fail to detect face using insightface, extract embedding on align face')
id_ante_embedding = self.handler_ante.get_feat(align_face)
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device)
if id_ante_embedding.ndim == 1:
id_ante_embedding = id_ante_embedding.unsqueeze(0)
# parsing
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(self.device)
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[
0
]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, self.to_gray(input))
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
# transform img before sending to eva-clip-vit
face_features_image = resize(
face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC
)
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
id_cond_vit, id_vit_hidden = self.clip_vision_model(
face_features_image, return_all_features=False, return_hidden=True, shuffle=False
)
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
id_cond_list.append(id_cond)
id_vit_hidden_list.append(id_vit_hidden)
id_uncond = torch.zeros_like(id_cond_list[0])
id_vit_hidden_uncond = []
for layer_idx in range(0, len(id_vit_hidden_list[0])):
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden_list[0][layer_idx]))
id_cond = torch.stack(id_cond_list, dim=1)
id_vit_hidden = id_vit_hidden_list[0]
for i in range(1, len(image_list)):
for j, x in enumerate(id_vit_hidden_list[i]):
id_vit_hidden[j] = torch.cat([id_vit_hidden[j], x], dim=1)
id_embedding = self.id_adapter(id_cond, id_vit_hidden)
uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond)
# return id_embedding
return uncond_id_embedding, id_embedding
def __call__(self, x, sigma, **extra_args):
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data**2) ** 0.5
t = self.timestep(sigma)
cfg_scale = extra_args['cfg_scale']
eps_positive = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0]
eps_negative = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0]
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative)
return x - noise_pred * sigma[:, None, None, None]
def inference(
self,
prompt,
size,
prompt_n='',
id_embedding=None,
uncond_id_embedding=None,
id_scale=1.0,
guidance_scale=1.2,
steps=4,
seed=-1,
):
# sigmas
sigmas = self.get_sigmas_karras(steps).to(self.device)
# latents
noise = torch.randn((size[0], 4, size[1] // 8, size[2] // 8), device="cpu", generator=torch.manual_seed(seed))
noise = noise.to(dtype=self.pipe.unet.dtype, device=self.device)
latents = noise * sigmas[0].to(noise)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.pipe.encode_prompt(
prompt=prompt,
negative_prompt=prompt_n,
)
add_time_ids = list((size[1], size[2]) + (0, 0) + (size[1], size[2]))
add_time_ids = torch.tensor([add_time_ids], dtype=self.pipe.unet.dtype, device=self.device)
add_neg_time_ids = add_time_ids.clone()
sampler_kwargs = dict(
cfg_scale=guidance_scale,
positive=dict(
encoder_hidden_states=prompt_embeds,
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids},
cross_attention_kwargs={'id_embedding': id_embedding, 'id_scale': id_scale},
),
negative=dict(
encoder_hidden_states=negative_prompt_embeds,
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids},
cross_attention_kwargs={'id_embedding': uncond_id_embedding, 'id_scale': id_scale},
),
)
latents = self.sampler(self, latents, sigmas, extra_args=sampler_kwargs, disable=False)
latents = latents.to(dtype=self.pipe.vae.dtype, device=self.device) / self.pipe.vae.config.scaling_factor
images = self.pipe.vae.decode(latents).sample
images = self.pipe.image_processor.postprocess(images, output_type='pil')
return images