|
import gc |
|
|
|
import cv2 |
|
import insightface |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from basicsr.utils import img2tensor, tensor2img |
|
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline |
|
from facexlib.parsing import init_parsing_model |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
|
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
from insightface.app import FaceAnalysis |
|
from safetensors.torch import load_file |
|
from torchvision.transforms import InterpolationMode |
|
from torchvision.transforms.functional import normalize, resize |
|
|
|
from eva_clip import create_model_and_transforms |
|
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
from pulid.encoders_transformer import IDFormer |
|
from pulid.utils import is_torch2_available, sample_dpmpp_2m, sample_dpmpp_sde |
|
|
|
if is_torch2_available(): |
|
from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor |
|
from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor |
|
else: |
|
from pulid.attention_processor import AttnProcessor, IDAttnProcessor |
|
|
|
|
|
class PuLIDPipeline: |
|
def __init__(self, sdxl_repo='Lykon/dreamshaper-xl-lightning', sampler='dpmpp_sde', *args, **kwargs): |
|
super().__init__() |
|
self.device = 'cuda' |
|
|
|
|
|
self.pipe = StableDiffusionXLPipeline.from_pretrained(sdxl_repo, torch_dtype=torch.float16, variant="fp16").to( |
|
self.device |
|
) |
|
self.pipe.watermark = None |
|
self.hack_unet_attn_layers(self.pipe.unet) |
|
|
|
|
|
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
|
|
self.id_adapter = IDFormer().to(self.device) |
|
|
|
|
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale_factor=1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
device=self.device, |
|
) |
|
self.face_helper.face_parse = None |
|
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) |
|
|
|
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) |
|
model = model.visual |
|
self.clip_vision_model = model.to(self.device) |
|
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) |
|
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) |
|
if not isinstance(eva_transform_mean, (list, tuple)): |
|
eva_transform_mean = (eva_transform_mean,) * 3 |
|
if not isinstance(eva_transform_std, (list, tuple)): |
|
eva_transform_std = (eva_transform_std,) * 3 |
|
self.eva_transform_mean = eva_transform_mean |
|
self.eva_transform_std = eva_transform_std |
|
|
|
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') |
|
self.app = FaceAnalysis( |
|
name='antelopev2', root='.', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
) |
|
self.app.prepare(ctx_id=0, det_size=(640, 640)) |
|
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx') |
|
self.handler_ante.prepare(ctx_id=0) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
self.load_pretrain() |
|
|
|
|
|
self.debug_img_list = [] |
|
|
|
|
|
linear_start = 0.00085 |
|
linear_end = 0.012 |
|
timesteps = 1000 |
|
betas = torch.linspace(linear_start**0.5, linear_end**0.5, timesteps, dtype=torch.float64) ** 2 |
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) |
|
|
|
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 |
|
self.log_sigmas = self.sigmas.log() |
|
self.sigma_data = 1.0 |
|
|
|
if sampler == 'dpmpp_sde': |
|
self.sampler = sample_dpmpp_sde |
|
elif sampler == 'dpmpp_2m': |
|
self.sampler = sample_dpmpp_2m |
|
else: |
|
raise NotImplementedError(f'sampler {sampler} not implemented') |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
log_sigma = sigma.log() |
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) |
|
|
|
def get_sigmas_karras(self, n, rho=7.0): |
|
ramp = torch.linspace(0, 1, n) |
|
min_inv_rho = self.sigma_min ** (1 / rho) |
|
max_inv_rho = self.sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return torch.cat([sigmas, sigmas.new_zeros([1])]) |
|
|
|
def hack_unet_attn_layers(self, unet): |
|
id_adapter_attn_procs = {} |
|
for name, _ in unet.attn_processors.items(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is not None: |
|
id_adapter_attn_procs[name] = IDAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
).to(unet.device) |
|
else: |
|
id_adapter_attn_procs[name] = AttnProcessor() |
|
unet.set_attn_processor(id_adapter_attn_procs) |
|
self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) |
|
|
|
def load_pretrain(self): |
|
hf_hub_download('guozinan/PuLID', 'pulid_v1.1.safetensors', local_dir='models') |
|
ckpt_path = 'models/pulid_v1.1.safetensors' |
|
state_dict = load_file(ckpt_path) |
|
state_dict_dict = {} |
|
for k, v in state_dict.items(): |
|
module = k.split('.')[0] |
|
state_dict_dict.setdefault(module, {}) |
|
new_k = k[len(module) + 1 :] |
|
state_dict_dict[module][new_k] = v |
|
|
|
for module in state_dict_dict: |
|
print(f'loading from {module}') |
|
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) |
|
|
|
def to_gray(self, img): |
|
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] |
|
x = x.repeat(1, 3, 1, 1) |
|
return x |
|
|
|
def get_id_embedding(self, image_list): |
|
""" |
|
Args: |
|
image in image_list: numpy rgb image, range [0, 255] |
|
""" |
|
id_cond_list = [] |
|
id_vit_hidden_list = [] |
|
for ii, image in enumerate(image_list): |
|
self.face_helper.clean_all() |
|
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
face_info = self.app.get(image_bgr) |
|
if len(face_info) > 0: |
|
face_info = sorted( |
|
face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]) |
|
)[ |
|
-1 |
|
] |
|
id_ante_embedding = face_info['embedding'] |
|
self.debug_img_list.append( |
|
image[ |
|
int(face_info['bbox'][1]) : int(face_info['bbox'][3]), |
|
int(face_info['bbox'][0]) : int(face_info['bbox'][2]), |
|
] |
|
) |
|
else: |
|
id_ante_embedding = None |
|
|
|
|
|
self.face_helper.read_image(image_bgr) |
|
self.face_helper.get_face_landmarks_5(only_center_face=True) |
|
self.face_helper.align_warp_face() |
|
if len(self.face_helper.cropped_faces) == 0: |
|
raise RuntimeError('facexlib align face fail') |
|
align_face = self.face_helper.cropped_faces[0] |
|
|
|
if id_ante_embedding is None: |
|
print('fail to detect face using insightface, extract embedding on align face') |
|
id_ante_embedding = self.handler_ante.get_feat(align_face) |
|
|
|
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) |
|
if id_ante_embedding.ndim == 1: |
|
id_ante_embedding = id_ante_embedding.unsqueeze(0) |
|
|
|
|
|
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 |
|
input = input.to(self.device) |
|
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[ |
|
0 |
|
] |
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True) |
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] |
|
bg = sum(parsing_out == i for i in bg_label).bool() |
|
white_image = torch.ones_like(input) |
|
|
|
face_features_image = torch.where(bg, white_image, self.to_gray(input)) |
|
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) |
|
|
|
|
|
face_features_image = resize( |
|
face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC |
|
) |
|
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) |
|
id_cond_vit, id_vit_hidden = self.clip_vision_model( |
|
face_features_image, return_all_features=False, return_hidden=True, shuffle=False |
|
) |
|
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) |
|
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) |
|
|
|
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) |
|
|
|
id_cond_list.append(id_cond) |
|
id_vit_hidden_list.append(id_vit_hidden) |
|
|
|
id_uncond = torch.zeros_like(id_cond_list[0]) |
|
id_vit_hidden_uncond = [] |
|
for layer_idx in range(0, len(id_vit_hidden_list[0])): |
|
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden_list[0][layer_idx])) |
|
|
|
id_cond = torch.stack(id_cond_list, dim=1) |
|
id_vit_hidden = id_vit_hidden_list[0] |
|
for i in range(1, len(image_list)): |
|
for j, x in enumerate(id_vit_hidden_list[i]): |
|
id_vit_hidden[j] = torch.cat([id_vit_hidden[j], x], dim=1) |
|
id_embedding = self.id_adapter(id_cond, id_vit_hidden) |
|
uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) |
|
|
|
|
|
return uncond_id_embedding, id_embedding |
|
|
|
def __call__(self, x, sigma, **extra_args): |
|
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data**2) ** 0.5 |
|
t = self.timestep(sigma) |
|
cfg_scale = extra_args['cfg_scale'] |
|
eps_positive = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] |
|
eps_negative = self.pipe.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] |
|
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) |
|
return x - noise_pred * sigma[:, None, None, None] |
|
|
|
def inference( |
|
self, |
|
prompt, |
|
size, |
|
prompt_n='', |
|
id_embedding=None, |
|
uncond_id_embedding=None, |
|
id_scale=1.0, |
|
guidance_scale=1.2, |
|
steps=4, |
|
seed=-1, |
|
): |
|
|
|
|
|
sigmas = self.get_sigmas_karras(steps).to(self.device) |
|
|
|
|
|
noise = torch.randn((size[0], 4, size[1] // 8, size[2] // 8), device="cpu", generator=torch.manual_seed(seed)) |
|
noise = noise.to(dtype=self.pipe.unet.dtype, device=self.device) |
|
latents = noise * sigmas[0].to(noise) |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=prompt_n, |
|
) |
|
|
|
add_time_ids = list((size[1], size[2]) + (0, 0) + (size[1], size[2])) |
|
add_time_ids = torch.tensor([add_time_ids], dtype=self.pipe.unet.dtype, device=self.device) |
|
add_neg_time_ids = add_time_ids.clone() |
|
|
|
sampler_kwargs = dict( |
|
cfg_scale=guidance_scale, |
|
positive=dict( |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}, |
|
cross_attention_kwargs={'id_embedding': id_embedding, 'id_scale': id_scale}, |
|
), |
|
negative=dict( |
|
encoder_hidden_states=negative_prompt_embeds, |
|
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids}, |
|
cross_attention_kwargs={'id_embedding': uncond_id_embedding, 'id_scale': id_scale}, |
|
), |
|
) |
|
|
|
latents = self.sampler(self, latents, sigmas, extra_args=sampler_kwargs, disable=False) |
|
latents = latents.to(dtype=self.pipe.vae.dtype, device=self.device) / self.pipe.vae.config.scaling_factor |
|
images = self.pipe.vae.decode(latents).sample |
|
images = self.pipe.image_processor.postprocess(images, output_type='pil') |
|
|
|
return images |
|
|