--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: stocks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stocks This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6553 - Accuracy: 0.8101 - Precision: 0.8111 - Recall: 0.8101 - F1: 0.8099 - Ratio: 0.5289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 2 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 3.5199 | 0.1626 | 10 | 1.7420 | 0.5530 | 0.5581 | 0.5530 | 0.5431 | 0.6477 | | 1.6995 | 0.3252 | 20 | 1.3228 | 0.5356 | 0.5554 | 0.5356 | 0.4899 | 0.2007 | | 1.1579 | 0.4878 | 30 | 0.9331 | 0.5785 | 0.5796 | 0.5785 | 0.5771 | 0.4423 | | 0.9588 | 0.6504 | 40 | 0.8592 | 0.6329 | 0.6340 | 0.6329 | 0.6321 | 0.5450 | | 0.91 | 0.8130 | 50 | 0.8239 | 0.6738 | 0.7473 | 0.6738 | 0.6477 | 0.7725 | | 0.8624 | 0.9756 | 60 | 0.8217 | 0.6 | 0.7217 | 0.6 | 0.5364 | 0.1295 | | 0.8238 | 1.1382 | 70 | 0.7594 | 0.7477 | 0.7802 | 0.7477 | 0.7401 | 0.6705 | | 0.7669 | 1.3008 | 80 | 0.6968 | 0.7913 | 0.7922 | 0.7913 | 0.7911 | 0.5289 | | 0.7648 | 1.4634 | 90 | 0.6744 | 0.8007 | 0.8015 | 0.8007 | 0.8005 | 0.4738 | | 0.691 | 1.6260 | 100 | 0.6739 | 0.7993 | 0.8029 | 0.7993 | 0.7987 | 0.5544 | | 0.6698 | 1.7886 | 110 | 0.6616 | 0.8067 | 0.8091 | 0.8067 | 0.8063 | 0.5443 | | 0.6985 | 1.9512 | 120 | 0.6553 | 0.8101 | 0.8111 | 0.8101 | 0.8099 | 0.5289 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1