adriansanz commited on
Commit
62a7849
·
verified ·
1 Parent(s): 26fc05f

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,878 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:2372
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Heu de veure si és necessari un estudi d'aïllament acústic i quin
31
+ nivell d'aïllament acústic precisa l'activitat.
32
+ sentences:
33
+ - Quin és el paper de les persones que resideixen amb el titular del dret d'habitatge
34
+ en la política d'habitatge?
35
+ - Quin és el límit de superfície per a les carpes informatives?
36
+ - Quin és l'objectiu de l'estudi d'aïllament acústic?
37
+ - source_sentence: 'Si us voleu matricular al proper curs 2022-2023 d''arts plàstiques
38
+ ho podeu fer a partir del 1 de juliol a les 16h, seleccionant una d''aquestes
39
+ opcions:'
40
+ sentences:
41
+ - Quin és el període de matrícula per al curs 2022-2023 d'arts plàstiques?
42
+ - Quan no cal presentar al·legacions en un expedient de baixa d'ofici?
43
+ - Quin és l'objectiu de les al·legacions respecte a un expedient sancionador de
44
+ l'Ordenança Municipal de Civisme i Convivència Ciutadana?
45
+ - source_sentence: Annexes Econòmics (Cooperació)
46
+ sentences:
47
+ - Qui és el responsable de l'elaboració de l'informe d'adequació de l'habitatge?
48
+ - Què han de fer les persones interessades durant el tràmit d'audiència en el procés
49
+ d'inclusió al registre municipal d'immobles desocupats?
50
+ - Quin és l'àmbit de la cooperació econòmica?
51
+ - source_sentence: En virtut del conveni de col.laboració amb l'Atrium de Viladecans,
52
+ tots els ciutadans que acreditin la seva residència a Viladecans es podran beneficiar
53
+ d'un 20% de descompte en la programació de teatre, música i dansa, objecte del
54
+ conveni.
55
+ sentences:
56
+ - Quin és el resultat de consultar un expedient d'activitats?
57
+ - Quin és el format de resposta d'aquesta sol·licitud?
58
+ - Quin és el descompte que s'aplica en la programació de teatre, música i dansa
59
+ per als ciutadans de Viladecans?
60
+ - source_sentence: Descripció. Retorna en format JSON adequat
61
+ sentences:
62
+ - Quin és el contingut de l'annex específic?
63
+ - Quin tipus d'ocupació es refereix a la renúncia de la llicència?
64
+ - Què passa amb l'habitatge?
65
+ model-index:
66
+ - name: SentenceTransformer based on BAAI/bge-m3
67
+ results:
68
+ - task:
69
+ type: information-retrieval
70
+ name: Information Retrieval
71
+ dataset:
72
+ name: dim 1024
73
+ type: dim_1024
74
+ metrics:
75
+ - type: cosine_accuracy@1
76
+ value: 0.33220910623946037
77
+ name: Cosine Accuracy@1
78
+ - type: cosine_accuracy@3
79
+ value: 0.5902192242833052
80
+ name: Cosine Accuracy@3
81
+ - type: cosine_accuracy@5
82
+ value: 0.6998313659359191
83
+ name: Cosine Accuracy@5
84
+ - type: cosine_accuracy@10
85
+ value: 0.8094435075885329
86
+ name: Cosine Accuracy@10
87
+ - type: cosine_precision@1
88
+ value: 0.33220910623946037
89
+ name: Cosine Precision@1
90
+ - type: cosine_precision@3
91
+ value: 0.1967397414277684
92
+ name: Cosine Precision@3
93
+ - type: cosine_precision@5
94
+ value: 0.1399662731871838
95
+ name: Cosine Precision@5
96
+ - type: cosine_precision@10
97
+ value: 0.08094435075885327
98
+ name: Cosine Precision@10
99
+ - type: cosine_recall@1
100
+ value: 0.33220910623946037
101
+ name: Cosine Recall@1
102
+ - type: cosine_recall@3
103
+ value: 0.5902192242833052
104
+ name: Cosine Recall@3
105
+ - type: cosine_recall@5
106
+ value: 0.6998313659359191
107
+ name: Cosine Recall@5
108
+ - type: cosine_recall@10
109
+ value: 0.8094435075885329
110
+ name: Cosine Recall@10
111
+ - type: cosine_ndcg@10
112
+ value: 0.5625986746470664
113
+ name: Cosine Ndcg@10
114
+ - type: cosine_mrr@10
115
+ value: 0.4843170320404718
116
+ name: Cosine Mrr@10
117
+ - type: cosine_map@100
118
+ value: 0.49243646079034575
119
+ name: Cosine Map@100
120
+ - task:
121
+ type: information-retrieval
122
+ name: Information Retrieval
123
+ dataset:
124
+ name: dim 768
125
+ type: dim_768
126
+ metrics:
127
+ - type: cosine_accuracy@1
128
+ value: 0.3406408094435076
129
+ name: Cosine Accuracy@1
130
+ - type: cosine_accuracy@3
131
+ value: 0.5767284991568297
132
+ name: Cosine Accuracy@3
133
+ - type: cosine_accuracy@5
134
+ value: 0.6981450252951096
135
+ name: Cosine Accuracy@5
136
+ - type: cosine_accuracy@10
137
+ value: 0.8161888701517707
138
+ name: Cosine Accuracy@10
139
+ - type: cosine_precision@1
140
+ value: 0.3406408094435076
141
+ name: Cosine Precision@1
142
+ - type: cosine_precision@3
143
+ value: 0.19224283305227655
144
+ name: Cosine Precision@3
145
+ - type: cosine_precision@5
146
+ value: 0.1396290050590219
147
+ name: Cosine Precision@5
148
+ - type: cosine_precision@10
149
+ value: 0.08161888701517706
150
+ name: Cosine Precision@10
151
+ - type: cosine_recall@1
152
+ value: 0.3406408094435076
153
+ name: Cosine Recall@1
154
+ - type: cosine_recall@3
155
+ value: 0.5767284991568297
156
+ name: Cosine Recall@3
157
+ - type: cosine_recall@5
158
+ value: 0.6981450252951096
159
+ name: Cosine Recall@5
160
+ - type: cosine_recall@10
161
+ value: 0.8161888701517707
162
+ name: Cosine Recall@10
163
+ - type: cosine_ndcg@10
164
+ value: 0.5661348054508011
165
+ name: Cosine Ndcg@10
166
+ - type: cosine_mrr@10
167
+ value: 0.4872065633448428
168
+ name: Cosine Mrr@10
169
+ - type: cosine_map@100
170
+ value: 0.49520736709122076
171
+ name: Cosine Map@100
172
+ - task:
173
+ type: information-retrieval
174
+ name: Information Retrieval
175
+ dataset:
176
+ name: dim 512
177
+ type: dim_512
178
+ metrics:
179
+ - type: cosine_accuracy@1
180
+ value: 0.3305227655986509
181
+ name: Cosine Accuracy@1
182
+ - type: cosine_accuracy@3
183
+ value: 0.5801011804384486
184
+ name: Cosine Accuracy@3
185
+ - type: cosine_accuracy@5
186
+ value: 0.6947723440134908
187
+ name: Cosine Accuracy@5
188
+ - type: cosine_accuracy@10
189
+ value: 0.8161888701517707
190
+ name: Cosine Accuracy@10
191
+ - type: cosine_precision@1
192
+ value: 0.3305227655986509
193
+ name: Cosine Precision@1
194
+ - type: cosine_precision@3
195
+ value: 0.19336706014614952
196
+ name: Cosine Precision@3
197
+ - type: cosine_precision@5
198
+ value: 0.13895446880269813
199
+ name: Cosine Precision@5
200
+ - type: cosine_precision@10
201
+ value: 0.08161888701517707
202
+ name: Cosine Precision@10
203
+ - type: cosine_recall@1
204
+ value: 0.3305227655986509
205
+ name: Cosine Recall@1
206
+ - type: cosine_recall@3
207
+ value: 0.5801011804384486
208
+ name: Cosine Recall@3
209
+ - type: cosine_recall@5
210
+ value: 0.6947723440134908
211
+ name: Cosine Recall@5
212
+ - type: cosine_recall@10
213
+ value: 0.8161888701517707
214
+ name: Cosine Recall@10
215
+ - type: cosine_ndcg@10
216
+ value: 0.5629643418278626
217
+ name: Cosine Ndcg@10
218
+ - type: cosine_mrr@10
219
+ value: 0.4829913809256133
220
+ name: Cosine Mrr@10
221
+ - type: cosine_map@100
222
+ value: 0.49079988310494693
223
+ name: Cosine Map@100
224
+ - task:
225
+ type: information-retrieval
226
+ name: Information Retrieval
227
+ dataset:
228
+ name: dim 256
229
+ type: dim_256
230
+ metrics:
231
+ - type: cosine_accuracy@1
232
+ value: 0.3288364249578415
233
+ name: Cosine Accuracy@1
234
+ - type: cosine_accuracy@3
235
+ value: 0.5885328836424958
236
+ name: Cosine Accuracy@3
237
+ - type: cosine_accuracy@5
238
+ value: 0.7015177065767285
239
+ name: Cosine Accuracy@5
240
+ - type: cosine_accuracy@10
241
+ value: 0.8094435075885329
242
+ name: Cosine Accuracy@10
243
+ - type: cosine_precision@1
244
+ value: 0.3288364249578415
245
+ name: Cosine Precision@1
246
+ - type: cosine_precision@3
247
+ value: 0.1961776278808319
248
+ name: Cosine Precision@3
249
+ - type: cosine_precision@5
250
+ value: 0.14030354131534567
251
+ name: Cosine Precision@5
252
+ - type: cosine_precision@10
253
+ value: 0.08094435075885327
254
+ name: Cosine Precision@10
255
+ - type: cosine_recall@1
256
+ value: 0.3288364249578415
257
+ name: Cosine Recall@1
258
+ - type: cosine_recall@3
259
+ value: 0.5885328836424958
260
+ name: Cosine Recall@3
261
+ - type: cosine_recall@5
262
+ value: 0.7015177065767285
263
+ name: Cosine Recall@5
264
+ - type: cosine_recall@10
265
+ value: 0.8094435075885329
266
+ name: Cosine Recall@10
267
+ - type: cosine_ndcg@10
268
+ value: 0.5625842077927447
269
+ name: Cosine Ndcg@10
270
+ - type: cosine_mrr@10
271
+ value: 0.48416981182579805
272
+ name: Cosine Mrr@10
273
+ - type: cosine_map@100
274
+ value: 0.49201787335851555
275
+ name: Cosine Map@100
276
+ - task:
277
+ type: information-retrieval
278
+ name: Information Retrieval
279
+ dataset:
280
+ name: dim 128
281
+ type: dim_128
282
+ metrics:
283
+ - type: cosine_accuracy@1
284
+ value: 0.3473861720067454
285
+ name: Cosine Accuracy@1
286
+ - type: cosine_accuracy@3
287
+ value: 0.581787521079258
288
+ name: Cosine Accuracy@3
289
+ - type: cosine_accuracy@5
290
+ value: 0.6998313659359191
291
+ name: Cosine Accuracy@5
292
+ - type: cosine_accuracy@10
293
+ value: 0.806070826306914
294
+ name: Cosine Accuracy@10
295
+ - type: cosine_precision@1
296
+ value: 0.3473861720067454
297
+ name: Cosine Precision@1
298
+ - type: cosine_precision@3
299
+ value: 0.19392917369308602
300
+ name: Cosine Precision@3
301
+ - type: cosine_precision@5
302
+ value: 0.1399662731871838
303
+ name: Cosine Precision@5
304
+ - type: cosine_precision@10
305
+ value: 0.0806070826306914
306
+ name: Cosine Precision@10
307
+ - type: cosine_recall@1
308
+ value: 0.3473861720067454
309
+ name: Cosine Recall@1
310
+ - type: cosine_recall@3
311
+ value: 0.581787521079258
312
+ name: Cosine Recall@3
313
+ - type: cosine_recall@5
314
+ value: 0.6998313659359191
315
+ name: Cosine Recall@5
316
+ - type: cosine_recall@10
317
+ value: 0.806070826306914
318
+ name: Cosine Recall@10
319
+ - type: cosine_ndcg@10
320
+ value: 0.565365572327355
321
+ name: Cosine Ndcg@10
322
+ - type: cosine_mrr@10
323
+ value: 0.4893626703070211
324
+ name: Cosine Mrr@10
325
+ - type: cosine_map@100
326
+ value: 0.49726527073459287
327
+ name: Cosine Map@100
328
+ - task:
329
+ type: information-retrieval
330
+ name: Information Retrieval
331
+ dataset:
332
+ name: dim 64
333
+ type: dim_64
334
+ metrics:
335
+ - type: cosine_accuracy@1
336
+ value: 0.2917369308600337
337
+ name: Cosine Accuracy@1
338
+ - type: cosine_accuracy@3
339
+ value: 0.5682967959527825
340
+ name: Cosine Accuracy@3
341
+ - type: cosine_accuracy@5
342
+ value: 0.6644182124789207
343
+ name: Cosine Accuracy@5
344
+ - type: cosine_accuracy@10
345
+ value: 0.7875210792580101
346
+ name: Cosine Accuracy@10
347
+ - type: cosine_precision@1
348
+ value: 0.2917369308600337
349
+ name: Cosine Precision@1
350
+ - type: cosine_precision@3
351
+ value: 0.18943226531759413
352
+ name: Cosine Precision@3
353
+ - type: cosine_precision@5
354
+ value: 0.13288364249578413
355
+ name: Cosine Precision@5
356
+ - type: cosine_precision@10
357
+ value: 0.07875210792580102
358
+ name: Cosine Precision@10
359
+ - type: cosine_recall@1
360
+ value: 0.2917369308600337
361
+ name: Cosine Recall@1
362
+ - type: cosine_recall@3
363
+ value: 0.5682967959527825
364
+ name: Cosine Recall@3
365
+ - type: cosine_recall@5
366
+ value: 0.6644182124789207
367
+ name: Cosine Recall@5
368
+ - type: cosine_recall@10
369
+ value: 0.7875210792580101
370
+ name: Cosine Recall@10
371
+ - type: cosine_ndcg@10
372
+ value: 0.5320349463938843
373
+ name: Cosine Ndcg@10
374
+ - type: cosine_mrr@10
375
+ value: 0.45117106988945077
376
+ name: Cosine Mrr@10
377
+ - type: cosine_map@100
378
+ value: 0.45948574441166834
379
+ name: Cosine Map@100
380
+ ---
381
+
382
+ # SentenceTransformer based on BAAI/bge-m3
383
+
384
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
385
+
386
+ ## Model Details
387
+
388
+ ### Model Description
389
+ - **Model Type:** Sentence Transformer
390
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
391
+ - **Maximum Sequence Length:** 8192 tokens
392
+ - **Output Dimensionality:** 1024 tokens
393
+ - **Similarity Function:** Cosine Similarity
394
+ - **Training Dataset:**
395
+ - json
396
+ <!-- - **Language:** Unknown -->
397
+ <!-- - **License:** Unknown -->
398
+
399
+ ### Model Sources
400
+
401
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
402
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
403
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
404
+
405
+ ### Full Model Architecture
406
+
407
+ ```
408
+ SentenceTransformer(
409
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
410
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
411
+ (2): Normalize()
412
+ )
413
+ ```
414
+
415
+ ## Usage
416
+
417
+ ### Direct Usage (Sentence Transformers)
418
+
419
+ First install the Sentence Transformers library:
420
+
421
+ ```bash
422
+ pip install -U sentence-transformers
423
+ ```
424
+
425
+ Then you can load this model and run inference.
426
+ ```python
427
+ from sentence_transformers import SentenceTransformer
428
+
429
+ # Download from the 🤗 Hub
430
+ model = SentenceTransformer("adriansanz/ST-tramits-SB-001-5ep")
431
+ # Run inference
432
+ sentences = [
433
+ 'Descripció. Retorna en format JSON adequat',
434
+ "Quin és el contingut de l'annex específic?",
435
+ "Què passa amb l'habitatge?",
436
+ ]
437
+ embeddings = model.encode(sentences)
438
+ print(embeddings.shape)
439
+ # [3, 1024]
440
+
441
+ # Get the similarity scores for the embeddings
442
+ similarities = model.similarity(embeddings, embeddings)
443
+ print(similarities.shape)
444
+ # [3, 3]
445
+ ```
446
+
447
+ <!--
448
+ ### Direct Usage (Transformers)
449
+
450
+ <details><summary>Click to see the direct usage in Transformers</summary>
451
+
452
+ </details>
453
+ -->
454
+
455
+ <!--
456
+ ### Downstream Usage (Sentence Transformers)
457
+
458
+ You can finetune this model on your own dataset.
459
+
460
+ <details><summary>Click to expand</summary>
461
+
462
+ </details>
463
+ -->
464
+
465
+ <!--
466
+ ### Out-of-Scope Use
467
+
468
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
469
+ -->
470
+
471
+ ## Evaluation
472
+
473
+ ### Metrics
474
+
475
+ #### Information Retrieval
476
+ * Dataset: `dim_1024`
477
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
478
+
479
+ | Metric | Value |
480
+ |:--------------------|:-----------|
481
+ | cosine_accuracy@1 | 0.3322 |
482
+ | cosine_accuracy@3 | 0.5902 |
483
+ | cosine_accuracy@5 | 0.6998 |
484
+ | cosine_accuracy@10 | 0.8094 |
485
+ | cosine_precision@1 | 0.3322 |
486
+ | cosine_precision@3 | 0.1967 |
487
+ | cosine_precision@5 | 0.14 |
488
+ | cosine_precision@10 | 0.0809 |
489
+ | cosine_recall@1 | 0.3322 |
490
+ | cosine_recall@3 | 0.5902 |
491
+ | cosine_recall@5 | 0.6998 |
492
+ | cosine_recall@10 | 0.8094 |
493
+ | cosine_ndcg@10 | 0.5626 |
494
+ | cosine_mrr@10 | 0.4843 |
495
+ | **cosine_map@100** | **0.4924** |
496
+
497
+ #### Information Retrieval
498
+ * Dataset: `dim_768`
499
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
500
+
501
+ | Metric | Value |
502
+ |:--------------------|:-----------|
503
+ | cosine_accuracy@1 | 0.3406 |
504
+ | cosine_accuracy@3 | 0.5767 |
505
+ | cosine_accuracy@5 | 0.6981 |
506
+ | cosine_accuracy@10 | 0.8162 |
507
+ | cosine_precision@1 | 0.3406 |
508
+ | cosine_precision@3 | 0.1922 |
509
+ | cosine_precision@5 | 0.1396 |
510
+ | cosine_precision@10 | 0.0816 |
511
+ | cosine_recall@1 | 0.3406 |
512
+ | cosine_recall@3 | 0.5767 |
513
+ | cosine_recall@5 | 0.6981 |
514
+ | cosine_recall@10 | 0.8162 |
515
+ | cosine_ndcg@10 | 0.5661 |
516
+ | cosine_mrr@10 | 0.4872 |
517
+ | **cosine_map@100** | **0.4952** |
518
+
519
+ #### Information Retrieval
520
+ * Dataset: `dim_512`
521
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
522
+
523
+ | Metric | Value |
524
+ |:--------------------|:-----------|
525
+ | cosine_accuracy@1 | 0.3305 |
526
+ | cosine_accuracy@3 | 0.5801 |
527
+ | cosine_accuracy@5 | 0.6948 |
528
+ | cosine_accuracy@10 | 0.8162 |
529
+ | cosine_precision@1 | 0.3305 |
530
+ | cosine_precision@3 | 0.1934 |
531
+ | cosine_precision@5 | 0.139 |
532
+ | cosine_precision@10 | 0.0816 |
533
+ | cosine_recall@1 | 0.3305 |
534
+ | cosine_recall@3 | 0.5801 |
535
+ | cosine_recall@5 | 0.6948 |
536
+ | cosine_recall@10 | 0.8162 |
537
+ | cosine_ndcg@10 | 0.563 |
538
+ | cosine_mrr@10 | 0.483 |
539
+ | **cosine_map@100** | **0.4908** |
540
+
541
+ #### Information Retrieval
542
+ * Dataset: `dim_256`
543
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
544
+
545
+ | Metric | Value |
546
+ |:--------------------|:----------|
547
+ | cosine_accuracy@1 | 0.3288 |
548
+ | cosine_accuracy@3 | 0.5885 |
549
+ | cosine_accuracy@5 | 0.7015 |
550
+ | cosine_accuracy@10 | 0.8094 |
551
+ | cosine_precision@1 | 0.3288 |
552
+ | cosine_precision@3 | 0.1962 |
553
+ | cosine_precision@5 | 0.1403 |
554
+ | cosine_precision@10 | 0.0809 |
555
+ | cosine_recall@1 | 0.3288 |
556
+ | cosine_recall@3 | 0.5885 |
557
+ | cosine_recall@5 | 0.7015 |
558
+ | cosine_recall@10 | 0.8094 |
559
+ | cosine_ndcg@10 | 0.5626 |
560
+ | cosine_mrr@10 | 0.4842 |
561
+ | **cosine_map@100** | **0.492** |
562
+
563
+ #### Information Retrieval
564
+ * Dataset: `dim_128`
565
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
566
+
567
+ | Metric | Value |
568
+ |:--------------------|:-----------|
569
+ | cosine_accuracy@1 | 0.3474 |
570
+ | cosine_accuracy@3 | 0.5818 |
571
+ | cosine_accuracy@5 | 0.6998 |
572
+ | cosine_accuracy@10 | 0.8061 |
573
+ | cosine_precision@1 | 0.3474 |
574
+ | cosine_precision@3 | 0.1939 |
575
+ | cosine_precision@5 | 0.14 |
576
+ | cosine_precision@10 | 0.0806 |
577
+ | cosine_recall@1 | 0.3474 |
578
+ | cosine_recall@3 | 0.5818 |
579
+ | cosine_recall@5 | 0.6998 |
580
+ | cosine_recall@10 | 0.8061 |
581
+ | cosine_ndcg@10 | 0.5654 |
582
+ | cosine_mrr@10 | 0.4894 |
583
+ | **cosine_map@100** | **0.4973** |
584
+
585
+ #### Information Retrieval
586
+ * Dataset: `dim_64`
587
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
588
+
589
+ | Metric | Value |
590
+ |:--------------------|:-----------|
591
+ | cosine_accuracy@1 | 0.2917 |
592
+ | cosine_accuracy@3 | 0.5683 |
593
+ | cosine_accuracy@5 | 0.6644 |
594
+ | cosine_accuracy@10 | 0.7875 |
595
+ | cosine_precision@1 | 0.2917 |
596
+ | cosine_precision@3 | 0.1894 |
597
+ | cosine_precision@5 | 0.1329 |
598
+ | cosine_precision@10 | 0.0788 |
599
+ | cosine_recall@1 | 0.2917 |
600
+ | cosine_recall@3 | 0.5683 |
601
+ | cosine_recall@5 | 0.6644 |
602
+ | cosine_recall@10 | 0.7875 |
603
+ | cosine_ndcg@10 | 0.532 |
604
+ | cosine_mrr@10 | 0.4512 |
605
+ | **cosine_map@100** | **0.4595** |
606
+
607
+ <!--
608
+ ## Bias, Risks and Limitations
609
+
610
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
611
+ -->
612
+
613
+ <!--
614
+ ### Recommendations
615
+
616
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
617
+ -->
618
+
619
+ ## Training Details
620
+
621
+ ### Training Dataset
622
+
623
+ #### json
624
+
625
+ * Dataset: json
626
+ * Size: 2,372 training samples
627
+ * Columns: <code>positive</code> and <code>anchor</code>
628
+ * Approximate statistics based on the first 1000 samples:
629
+ | | positive | anchor |
630
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
631
+ | type | string | string |
632
+ | details | <ul><li>min: 3 tokens</li><li>mean: 35.12 tokens</li><li>max: 166 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 19.49 tokens</li><li>max: 47 tokens</li></ul> |
633
+ * Samples:
634
+ | positive | anchor |
635
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
636
+ | <code>Comunicar la variació d'alguna de les següents dades del Padró Municipal d'Habitants: Nom, Cognoms, Data de naixement, DNI, Passaport, Número de permís de residència (NIE), Sexe, Municipi i/o província de naixement, Nacionalitat, Titulació acadèmica.</code> | <code>Quin és l'objectiu del canvi de dades personals en el Padró Municipal d'Habitants?</code> |
637
+ | <code>EN QUÈ CONSISTEIX: Tramitar la sol·licitud de matrimoni civil a l'Ajuntament.</code> | <code>Què és el matrimoni civil a l'Ajuntament de Sant Boi de Llobregat?</code> |
638
+ | <code>En domiciliar el pagament de tributs municipals en entitats bancàries.</code> | <code>Quin és el benefici de domiciliar el pagament de tributs?</code> |
639
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
640
+ ```json
641
+ {
642
+ "loss": "MultipleNegativesRankingLoss",
643
+ "matryoshka_dims": [
644
+ 1024,
645
+ 768,
646
+ 512,
647
+ 256,
648
+ 128,
649
+ 64
650
+ ],
651
+ "matryoshka_weights": [
652
+ 1,
653
+ 1,
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1
658
+ ],
659
+ "n_dims_per_step": -1
660
+ }
661
+ ```
662
+
663
+ ### Training Hyperparameters
664
+ #### Non-Default Hyperparameters
665
+
666
+ - `eval_strategy`: epoch
667
+ - `per_device_train_batch_size`: 16
668
+ - `per_device_eval_batch_size`: 16
669
+ - `gradient_accumulation_steps`: 16
670
+ - `learning_rate`: 2e-05
671
+ - `num_train_epochs`: 5
672
+ - `lr_scheduler_type`: cosine
673
+ - `warmup_ratio`: 0.2
674
+ - `bf16`: True
675
+ - `tf32`: True
676
+ - `load_best_model_at_end`: True
677
+ - `optim`: adamw_torch_fused
678
+ - `batch_sampler`: no_duplicates
679
+
680
+ #### All Hyperparameters
681
+ <details><summary>Click to expand</summary>
682
+
683
+ - `overwrite_output_dir`: False
684
+ - `do_predict`: False
685
+ - `eval_strategy`: epoch
686
+ - `prediction_loss_only`: True
687
+ - `per_device_train_batch_size`: 16
688
+ - `per_device_eval_batch_size`: 16
689
+ - `per_gpu_train_batch_size`: None
690
+ - `per_gpu_eval_batch_size`: None
691
+ - `gradient_accumulation_steps`: 16
692
+ - `eval_accumulation_steps`: None
693
+ - `torch_empty_cache_steps`: None
694
+ - `learning_rate`: 2e-05
695
+ - `weight_decay`: 0.0
696
+ - `adam_beta1`: 0.9
697
+ - `adam_beta2`: 0.999
698
+ - `adam_epsilon`: 1e-08
699
+ - `max_grad_norm`: 1.0
700
+ - `num_train_epochs`: 5
701
+ - `max_steps`: -1
702
+ - `lr_scheduler_type`: cosine
703
+ - `lr_scheduler_kwargs`: {}
704
+ - `warmup_ratio`: 0.2
705
+ - `warmup_steps`: 0
706
+ - `log_level`: passive
707
+ - `log_level_replica`: warning
708
+ - `log_on_each_node`: True
709
+ - `logging_nan_inf_filter`: True
710
+ - `save_safetensors`: True
711
+ - `save_on_each_node`: False
712
+ - `save_only_model`: False
713
+ - `restore_callback_states_from_checkpoint`: False
714
+ - `no_cuda`: False
715
+ - `use_cpu`: False
716
+ - `use_mps_device`: False
717
+ - `seed`: 42
718
+ - `data_seed`: None
719
+ - `jit_mode_eval`: False
720
+ - `use_ipex`: False
721
+ - `bf16`: True
722
+ - `fp16`: False
723
+ - `fp16_opt_level`: O1
724
+ - `half_precision_backend`: auto
725
+ - `bf16_full_eval`: False
726
+ - `fp16_full_eval`: False
727
+ - `tf32`: True
728
+ - `local_rank`: 0
729
+ - `ddp_backend`: None
730
+ - `tpu_num_cores`: None
731
+ - `tpu_metrics_debug`: False
732
+ - `debug`: []
733
+ - `dataloader_drop_last`: False
734
+ - `dataloader_num_workers`: 0
735
+ - `dataloader_prefetch_factor`: None
736
+ - `past_index`: -1
737
+ - `disable_tqdm`: False
738
+ - `remove_unused_columns`: True
739
+ - `label_names`: None
740
+ - `load_best_model_at_end`: True
741
+ - `ignore_data_skip`: False
742
+ - `fsdp`: []
743
+ - `fsdp_min_num_params`: 0
744
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
745
+ - `fsdp_transformer_layer_cls_to_wrap`: None
746
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
747
+ - `deepspeed`: None
748
+ - `label_smoothing_factor`: 0.0
749
+ - `optim`: adamw_torch_fused
750
+ - `optim_args`: None
751
+ - `adafactor`: False
752
+ - `group_by_length`: False
753
+ - `length_column_name`: length
754
+ - `ddp_find_unused_parameters`: None
755
+ - `ddp_bucket_cap_mb`: None
756
+ - `ddp_broadcast_buffers`: False
757
+ - `dataloader_pin_memory`: True
758
+ - `dataloader_persistent_workers`: False
759
+ - `skip_memory_metrics`: True
760
+ - `use_legacy_prediction_loop`: False
761
+ - `push_to_hub`: False
762
+ - `resume_from_checkpoint`: None
763
+ - `hub_model_id`: None
764
+ - `hub_strategy`: every_save
765
+ - `hub_private_repo`: False
766
+ - `hub_always_push`: False
767
+ - `gradient_checkpointing`: False
768
+ - `gradient_checkpointing_kwargs`: None
769
+ - `include_inputs_for_metrics`: False
770
+ - `eval_do_concat_batches`: True
771
+ - `fp16_backend`: auto
772
+ - `push_to_hub_model_id`: None
773
+ - `push_to_hub_organization`: None
774
+ - `mp_parameters`:
775
+ - `auto_find_batch_size`: False
776
+ - `full_determinism`: False
777
+ - `torchdynamo`: None
778
+ - `ray_scope`: last
779
+ - `ddp_timeout`: 1800
780
+ - `torch_compile`: False
781
+ - `torch_compile_backend`: None
782
+ - `torch_compile_mode`: None
783
+ - `dispatch_batches`: None
784
+ - `split_batches`: None
785
+ - `include_tokens_per_second`: False
786
+ - `include_num_input_tokens_seen`: False
787
+ - `neftune_noise_alpha`: None
788
+ - `optim_target_modules`: None
789
+ - `batch_eval_metrics`: False
790
+ - `eval_on_start`: False
791
+ - `eval_use_gather_object`: False
792
+ - `batch_sampler`: no_duplicates
793
+ - `multi_dataset_batch_sampler`: proportional
794
+
795
+ </details>
796
+
797
+ ### Training Logs
798
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
799
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
800
+ | 0.9664 | 9 | - | 0.4730 | 0.4766 | 0.4640 | 0.4612 | 0.4456 | 0.4083 |
801
+ | 1.0738 | 10 | 2.6023 | - | - | - | - | - | - |
802
+ | 1.9329 | 18 | - | 0.4951 | 0.4966 | 0.4977 | 0.4773 | 0.4849 | 0.4501 |
803
+ | 2.1477 | 20 | 0.974 | - | - | - | - | - | - |
804
+ | 2.8993 | 27 | - | 0.4891 | 0.4973 | 0.4941 | 0.4867 | 0.4925 | 0.4684 |
805
+ | 3.2215 | 30 | 0.408 | - | - | - | - | - | - |
806
+ | **3.9732** | **37** | **-** | **0.4944** | **0.4998** | **0.4931** | **0.4991** | **0.4974** | **0.4616** |
807
+ | 4.2953 | 40 | 0.2718 | - | - | - | - | - | - |
808
+ | 4.8322 | 45 | - | 0.4924 | 0.4952 | 0.4908 | 0.4920 | 0.4973 | 0.4595 |
809
+
810
+ * The bold row denotes the saved checkpoint.
811
+
812
+ ### Framework Versions
813
+ - Python: 3.10.12
814
+ - Sentence Transformers: 3.2.0
815
+ - Transformers: 4.44.2
816
+ - PyTorch: 2.4.1+cu121
817
+ - Accelerate: 1.1.0.dev0
818
+ - Datasets: 3.0.1
819
+ - Tokenizers: 0.19.1
820
+
821
+ ## Citation
822
+
823
+ ### BibTeX
824
+
825
+ #### Sentence Transformers
826
+ ```bibtex
827
+ @inproceedings{reimers-2019-sentence-bert,
828
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
829
+ author = "Reimers, Nils and Gurevych, Iryna",
830
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
831
+ month = "11",
832
+ year = "2019",
833
+ publisher = "Association for Computational Linguistics",
834
+ url = "https://arxiv.org/abs/1908.10084",
835
+ }
836
+ ```
837
+
838
+ #### MatryoshkaLoss
839
+ ```bibtex
840
+ @misc{kusupati2024matryoshka,
841
+ title={Matryoshka Representation Learning},
842
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
843
+ year={2024},
844
+ eprint={2205.13147},
845
+ archivePrefix={arXiv},
846
+ primaryClass={cs.LG}
847
+ }
848
+ ```
849
+
850
+ #### MultipleNegativesRankingLoss
851
+ ```bibtex
852
+ @misc{henderson2017efficient,
853
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
854
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
855
+ year={2017},
856
+ eprint={1705.00652},
857
+ archivePrefix={arXiv},
858
+ primaryClass={cs.CL}
859
+ }
860
+ ```
861
+
862
+ <!--
863
+ ## Glossary
864
+
865
+ *Clearly define terms in order to be accessible across audiences.*
866
+ -->
867
+
868
+ <!--
869
+ ## Model Card Authors
870
+
871
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
872
+ -->
873
+
874
+ <!--
875
+ ## Model Card Contact
876
+
877
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
878
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b6da637ae3abfb6571dcba15b6910dc1fe1292a830cd8f1839716b1894796e4
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }