adriansanz commited on
Commit
241cb21
·
verified ·
1 Parent(s): 8e749fa

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:5520
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Queda exclosa de la prohibició, dintre de les àrees recreatives
31
+ i d'acampada i en parcel·les de les urbanitzacions, la utilització dels fogons
32
+ de gas i de barbacoes d'obra amb mataguspires.
33
+ sentences:
34
+ - Què està prohibit fer en àrees d'acampada?
35
+ - Quin és el benefici de la reserva d'un equipament municipal?
36
+ - Quin és el benefici de la targeta d'aparcament individual per a l'autonomia personal?
37
+ - source_sentence: Aquest tràmit permet participar en processos oberts de selecció
38
+ i provisió de personal de l'Ajuntament, i fer el pagament de la taxa per drets
39
+ d'examen establerta en la convocatòria.
40
+ sentences:
41
+ - Quin és el requisit per participar en un procés de selecció de personal de l'Ajuntament?
42
+ - On es pot trobar la relació de requeriments de documentació per a l'ajut de menjador
43
+ escolar?
44
+ - Quin és el tipus d'activitats que es poden practicar amb les armes de 4a categoria?
45
+ - source_sentence: Sol·licitar la cessió temporal d’un compostador domèstic.
46
+ sentences:
47
+ - Quin és el requisit per a la tala d'arbres aïllats en sòl urbà?
48
+ - Quin és el paper de la persona interessada en aquest tràmit?
49
+ - Quin és el paper del compostador domèstic en la reducció de les emissions de gasos
50
+ d'efecte hivernacle?
51
+ - source_sentence: Matriculació a l'Escola Bressol Municipal El Patufet.
52
+ sentences:
53
+ - Quin és el termini màxim per a deutes de 1.500,01 fins a 6.000,00 euros en el
54
+ criteri excepcional?
55
+ - Quin és el lloc on es realitza el tràmit de matrícula?
56
+ - Quin és el lloc on es realitza el taller 'Informàtica nivell bàsic'?
57
+ - source_sentence: Aquest tipus de transmissió entre cedent i cessionari només podrà
58
+ ser de caràcter gratuït i no condicionada.
59
+ sentences:
60
+ - Quin és el caràcter de la transmissió de drets funeraris entre cedent i cessionari?
61
+ - Quin és el propòsit de la comunicació prèvia en relació amb la intervenció definitiva?
62
+ - Quin és el propòsit de la Deixalleria municipal?
63
+ model-index:
64
+ - name: SentenceTransformer based on BAAI/bge-m3
65
+ results:
66
+ - task:
67
+ type: information-retrieval
68
+ name: Information Retrieval
69
+ dataset:
70
+ name: dim 1024
71
+ type: dim_1024
72
+ metrics:
73
+ - type: cosine_accuracy@1
74
+ value: 0.04782608695652174
75
+ name: Cosine Accuracy@1
76
+ - type: cosine_accuracy@3
77
+ value: 0.20869565217391303
78
+ name: Cosine Accuracy@3
79
+ - type: cosine_accuracy@5
80
+ value: 0.30869565217391304
81
+ name: Cosine Accuracy@5
82
+ - type: cosine_accuracy@10
83
+ value: 0.5565217391304348
84
+ name: Cosine Accuracy@10
85
+ - type: cosine_precision@1
86
+ value: 0.04782608695652174
87
+ name: Cosine Precision@1
88
+ - type: cosine_precision@3
89
+ value: 0.06956521739130433
90
+ name: Cosine Precision@3
91
+ - type: cosine_precision@5
92
+ value: 0.061739130434782616
93
+ name: Cosine Precision@5
94
+ - type: cosine_precision@10
95
+ value: 0.055652173913043466
96
+ name: Cosine Precision@10
97
+ - type: cosine_recall@1
98
+ value: 0.04782608695652174
99
+ name: Cosine Recall@1
100
+ - type: cosine_recall@3
101
+ value: 0.20869565217391303
102
+ name: Cosine Recall@3
103
+ - type: cosine_recall@5
104
+ value: 0.30869565217391304
105
+ name: Cosine Recall@5
106
+ - type: cosine_recall@10
107
+ value: 0.5565217391304348
108
+ name: Cosine Recall@10
109
+ - type: cosine_ndcg@10
110
+ value: 0.25888429095047366
111
+ name: Cosine Ndcg@10
112
+ - type: cosine_mrr@10
113
+ value: 0.16955314009661854
114
+ name: Cosine Mrr@10
115
+ - type: cosine_map@100
116
+ value: 0.18763324173665294
117
+ name: Cosine Map@100
118
+ - task:
119
+ type: information-retrieval
120
+ name: Information Retrieval
121
+ dataset:
122
+ name: dim 768
123
+ type: dim_768
124
+ metrics:
125
+ - type: cosine_accuracy@1
126
+ value: 0.06086956521739131
127
+ name: Cosine Accuracy@1
128
+ - type: cosine_accuracy@3
129
+ value: 0.21304347826086956
130
+ name: Cosine Accuracy@3
131
+ - type: cosine_accuracy@5
132
+ value: 0.30434782608695654
133
+ name: Cosine Accuracy@5
134
+ - type: cosine_accuracy@10
135
+ value: 0.5565217391304348
136
+ name: Cosine Accuracy@10
137
+ - type: cosine_precision@1
138
+ value: 0.06086956521739131
139
+ name: Cosine Precision@1
140
+ - type: cosine_precision@3
141
+ value: 0.07101449275362319
142
+ name: Cosine Precision@3
143
+ - type: cosine_precision@5
144
+ value: 0.06086956521739131
145
+ name: Cosine Precision@5
146
+ - type: cosine_precision@10
147
+ value: 0.055652173913043466
148
+ name: Cosine Precision@10
149
+ - type: cosine_recall@1
150
+ value: 0.06086956521739131
151
+ name: Cosine Recall@1
152
+ - type: cosine_recall@3
153
+ value: 0.21304347826086956
154
+ name: Cosine Recall@3
155
+ - type: cosine_recall@5
156
+ value: 0.30434782608695654
157
+ name: Cosine Recall@5
158
+ - type: cosine_recall@10
159
+ value: 0.5565217391304348
160
+ name: Cosine Recall@10
161
+ - type: cosine_ndcg@10
162
+ value: 0.2637812435357463
163
+ name: Cosine Ndcg@10
164
+ - type: cosine_mrr@10
165
+ value: 0.17599723947550047
166
+ name: Cosine Mrr@10
167
+ - type: cosine_map@100
168
+ value: 0.19341889075062485
169
+ name: Cosine Map@100
170
+ - task:
171
+ type: information-retrieval
172
+ name: Information Retrieval
173
+ dataset:
174
+ name: dim 512
175
+ type: dim_512
176
+ metrics:
177
+ - type: cosine_accuracy@1
178
+ value: 0.0782608695652174
179
+ name: Cosine Accuracy@1
180
+ - type: cosine_accuracy@3
181
+ value: 0.21739130434782608
182
+ name: Cosine Accuracy@3
183
+ - type: cosine_accuracy@5
184
+ value: 0.34347826086956523
185
+ name: Cosine Accuracy@5
186
+ - type: cosine_accuracy@10
187
+ value: 0.5695652173913044
188
+ name: Cosine Accuracy@10
189
+ - type: cosine_precision@1
190
+ value: 0.0782608695652174
191
+ name: Cosine Precision@1
192
+ - type: cosine_precision@3
193
+ value: 0.07246376811594202
194
+ name: Cosine Precision@3
195
+ - type: cosine_precision@5
196
+ value: 0.06869565217391305
197
+ name: Cosine Precision@5
198
+ - type: cosine_precision@10
199
+ value: 0.05695652173913043
200
+ name: Cosine Precision@10
201
+ - type: cosine_recall@1
202
+ value: 0.0782608695652174
203
+ name: Cosine Recall@1
204
+ - type: cosine_recall@3
205
+ value: 0.21739130434782608
206
+ name: Cosine Recall@3
207
+ - type: cosine_recall@5
208
+ value: 0.34347826086956523
209
+ name: Cosine Recall@5
210
+ - type: cosine_recall@10
211
+ value: 0.5695652173913044
212
+ name: Cosine Recall@10
213
+ - type: cosine_ndcg@10
214
+ value: 0.28117776588045035
215
+ name: Cosine Ndcg@10
216
+ - type: cosine_mrr@10
217
+ value: 0.1947342995169084
218
+ name: Cosine Mrr@10
219
+ - type: cosine_map@100
220
+ value: 0.21224466664057137
221
+ name: Cosine Map@100
222
+ - task:
223
+ type: information-retrieval
224
+ name: Information Retrieval
225
+ dataset:
226
+ name: dim 256
227
+ type: dim_256
228
+ metrics:
229
+ - type: cosine_accuracy@1
230
+ value: 0.05217391304347826
231
+ name: Cosine Accuracy@1
232
+ - type: cosine_accuracy@3
233
+ value: 0.20869565217391303
234
+ name: Cosine Accuracy@3
235
+ - type: cosine_accuracy@5
236
+ value: 0.3173913043478261
237
+ name: Cosine Accuracy@5
238
+ - type: cosine_accuracy@10
239
+ value: 0.5130434782608696
240
+ name: Cosine Accuracy@10
241
+ - type: cosine_precision@1
242
+ value: 0.05217391304347826
243
+ name: Cosine Precision@1
244
+ - type: cosine_precision@3
245
+ value: 0.06956521739130433
246
+ name: Cosine Precision@3
247
+ - type: cosine_precision@5
248
+ value: 0.06347826086956522
249
+ name: Cosine Precision@5
250
+ - type: cosine_precision@10
251
+ value: 0.05130434782608694
252
+ name: Cosine Precision@10
253
+ - type: cosine_recall@1
254
+ value: 0.05217391304347826
255
+ name: Cosine Recall@1
256
+ - type: cosine_recall@3
257
+ value: 0.20869565217391303
258
+ name: Cosine Recall@3
259
+ - type: cosine_recall@5
260
+ value: 0.3173913043478261
261
+ name: Cosine Recall@5
262
+ - type: cosine_recall@10
263
+ value: 0.5130434782608696
264
+ name: Cosine Recall@10
265
+ - type: cosine_ndcg@10
266
+ value: 0.24833360148474737
267
+ name: Cosine Ndcg@10
268
+ - type: cosine_mrr@10
269
+ value: 0.16793305728088342
270
+ name: Cosine Mrr@10
271
+ - type: cosine_map@100
272
+ value: 0.1892957688791951
273
+ name: Cosine Map@100
274
+ - task:
275
+ type: information-retrieval
276
+ name: Information Retrieval
277
+ dataset:
278
+ name: dim 128
279
+ type: dim_128
280
+ metrics:
281
+ - type: cosine_accuracy@1
282
+ value: 0.05652173913043478
283
+ name: Cosine Accuracy@1
284
+ - type: cosine_accuracy@3
285
+ value: 0.22608695652173913
286
+ name: Cosine Accuracy@3
287
+ - type: cosine_accuracy@5
288
+ value: 0.32608695652173914
289
+ name: Cosine Accuracy@5
290
+ - type: cosine_accuracy@10
291
+ value: 0.5434782608695652
292
+ name: Cosine Accuracy@10
293
+ - type: cosine_precision@1
294
+ value: 0.05652173913043478
295
+ name: Cosine Precision@1
296
+ - type: cosine_precision@3
297
+ value: 0.0753623188405797
298
+ name: Cosine Precision@3
299
+ - type: cosine_precision@5
300
+ value: 0.06521739130434782
301
+ name: Cosine Precision@5
302
+ - type: cosine_precision@10
303
+ value: 0.05434782608695651
304
+ name: Cosine Precision@10
305
+ - type: cosine_recall@1
306
+ value: 0.05652173913043478
307
+ name: Cosine Recall@1
308
+ - type: cosine_recall@3
309
+ value: 0.22608695652173913
310
+ name: Cosine Recall@3
311
+ - type: cosine_recall@5
312
+ value: 0.32608695652173914
313
+ name: Cosine Recall@5
314
+ - type: cosine_recall@10
315
+ value: 0.5434782608695652
316
+ name: Cosine Recall@10
317
+ - type: cosine_ndcg@10
318
+ value: 0.2660596038952714
319
+ name: Cosine Ndcg@10
320
+ - type: cosine_mrr@10
321
+ value: 0.18197895100069028
322
+ name: Cosine Mrr@10
323
+ - type: cosine_map@100
324
+ value: 0.20038255187663148
325
+ name: Cosine Map@100
326
+ - task:
327
+ type: information-retrieval
328
+ name: Information Retrieval
329
+ dataset:
330
+ name: dim 64
331
+ type: dim_64
332
+ metrics:
333
+ - type: cosine_accuracy@1
334
+ value: 0.05652173913043478
335
+ name: Cosine Accuracy@1
336
+ - type: cosine_accuracy@3
337
+ value: 0.21739130434782608
338
+ name: Cosine Accuracy@3
339
+ - type: cosine_accuracy@5
340
+ value: 0.3173913043478261
341
+ name: Cosine Accuracy@5
342
+ - type: cosine_accuracy@10
343
+ value: 0.5434782608695652
344
+ name: Cosine Accuracy@10
345
+ - type: cosine_precision@1
346
+ value: 0.05652173913043478
347
+ name: Cosine Precision@1
348
+ - type: cosine_precision@3
349
+ value: 0.07246376811594202
350
+ name: Cosine Precision@3
351
+ - type: cosine_precision@5
352
+ value: 0.06347826086956522
353
+ name: Cosine Precision@5
354
+ - type: cosine_precision@10
355
+ value: 0.054347826086956506
356
+ name: Cosine Precision@10
357
+ - type: cosine_recall@1
358
+ value: 0.05652173913043478
359
+ name: Cosine Recall@1
360
+ - type: cosine_recall@3
361
+ value: 0.21739130434782608
362
+ name: Cosine Recall@3
363
+ - type: cosine_recall@5
364
+ value: 0.3173913043478261
365
+ name: Cosine Recall@5
366
+ - type: cosine_recall@10
367
+ value: 0.5434782608695652
368
+ name: Cosine Recall@10
369
+ - type: cosine_ndcg@10
370
+ value: 0.2641081743881476
371
+ name: Cosine Ndcg@10
372
+ - type: cosine_mrr@10
373
+ value: 0.17965838509316792
374
+ name: Cosine Mrr@10
375
+ - type: cosine_map@100
376
+ value: 0.19707496290303578
377
+ name: Cosine Map@100
378
+ ---
379
+
380
+ # SentenceTransformer based on BAAI/bge-m3
381
+
382
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
383
+
384
+ ## Model Details
385
+
386
+ ### Model Description
387
+ - **Model Type:** Sentence Transformer
388
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
389
+ - **Maximum Sequence Length:** 8192 tokens
390
+ - **Output Dimensionality:** 1024 tokens
391
+ - **Similarity Function:** Cosine Similarity
392
+ - **Training Dataset:**
393
+ - json
394
+ <!-- - **Language:** Unknown -->
395
+ <!-- - **License:** Unknown -->
396
+
397
+ ### Model Sources
398
+
399
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
400
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
401
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
402
+
403
+ ### Full Model Architecture
404
+
405
+ ```
406
+ SentenceTransformer(
407
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
408
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
409
+ (2): Normalize()
410
+ )
411
+ ```
412
+
413
+ ## Usage
414
+
415
+ ### Direct Usage (Sentence Transformers)
416
+
417
+ First install the Sentence Transformers library:
418
+
419
+ ```bash
420
+ pip install -U sentence-transformers
421
+ ```
422
+
423
+ Then you can load this model and run inference.
424
+ ```python
425
+ from sentence_transformers import SentenceTransformer
426
+
427
+ # Download from the 🤗 Hub
428
+ model = SentenceTransformer("adriansanz/sqv-v5-10ep")
429
+ # Run inference
430
+ sentences = [
431
+ 'Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada.',
432
+ 'Quin és el caràcter de la transmissió de drets funeraris entre cedent i cessionari?',
433
+ 'Quin és el propòsit de la Deixalleria municipal?',
434
+ ]
435
+ embeddings = model.encode(sentences)
436
+ print(embeddings.shape)
437
+ # [3, 1024]
438
+
439
+ # Get the similarity scores for the embeddings
440
+ similarities = model.similarity(embeddings, embeddings)
441
+ print(similarities.shape)
442
+ # [3, 3]
443
+ ```
444
+
445
+ <!--
446
+ ### Direct Usage (Transformers)
447
+
448
+ <details><summary>Click to see the direct usage in Transformers</summary>
449
+
450
+ </details>
451
+ -->
452
+
453
+ <!--
454
+ ### Downstream Usage (Sentence Transformers)
455
+
456
+ You can finetune this model on your own dataset.
457
+
458
+ <details><summary>Click to expand</summary>
459
+
460
+ </details>
461
+ -->
462
+
463
+ <!--
464
+ ### Out-of-Scope Use
465
+
466
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
467
+ -->
468
+
469
+ ## Evaluation
470
+
471
+ ### Metrics
472
+
473
+ #### Information Retrieval
474
+ * Dataset: `dim_1024`
475
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
476
+
477
+ | Metric | Value |
478
+ |:--------------------|:-----------|
479
+ | cosine_accuracy@1 | 0.0478 |
480
+ | cosine_accuracy@3 | 0.2087 |
481
+ | cosine_accuracy@5 | 0.3087 |
482
+ | cosine_accuracy@10 | 0.5565 |
483
+ | cosine_precision@1 | 0.0478 |
484
+ | cosine_precision@3 | 0.0696 |
485
+ | cosine_precision@5 | 0.0617 |
486
+ | cosine_precision@10 | 0.0557 |
487
+ | cosine_recall@1 | 0.0478 |
488
+ | cosine_recall@3 | 0.2087 |
489
+ | cosine_recall@5 | 0.3087 |
490
+ | cosine_recall@10 | 0.5565 |
491
+ | cosine_ndcg@10 | 0.2589 |
492
+ | cosine_mrr@10 | 0.1696 |
493
+ | **cosine_map@100** | **0.1876** |
494
+
495
+ #### Information Retrieval
496
+ * Dataset: `dim_768`
497
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
498
+
499
+ | Metric | Value |
500
+ |:--------------------|:-----------|
501
+ | cosine_accuracy@1 | 0.0609 |
502
+ | cosine_accuracy@3 | 0.213 |
503
+ | cosine_accuracy@5 | 0.3043 |
504
+ | cosine_accuracy@10 | 0.5565 |
505
+ | cosine_precision@1 | 0.0609 |
506
+ | cosine_precision@3 | 0.071 |
507
+ | cosine_precision@5 | 0.0609 |
508
+ | cosine_precision@10 | 0.0557 |
509
+ | cosine_recall@1 | 0.0609 |
510
+ | cosine_recall@3 | 0.213 |
511
+ | cosine_recall@5 | 0.3043 |
512
+ | cosine_recall@10 | 0.5565 |
513
+ | cosine_ndcg@10 | 0.2638 |
514
+ | cosine_mrr@10 | 0.176 |
515
+ | **cosine_map@100** | **0.1934** |
516
+
517
+ #### Information Retrieval
518
+ * Dataset: `dim_512`
519
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:--------------------|:-----------|
523
+ | cosine_accuracy@1 | 0.0783 |
524
+ | cosine_accuracy@3 | 0.2174 |
525
+ | cosine_accuracy@5 | 0.3435 |
526
+ | cosine_accuracy@10 | 0.5696 |
527
+ | cosine_precision@1 | 0.0783 |
528
+ | cosine_precision@3 | 0.0725 |
529
+ | cosine_precision@5 | 0.0687 |
530
+ | cosine_precision@10 | 0.057 |
531
+ | cosine_recall@1 | 0.0783 |
532
+ | cosine_recall@3 | 0.2174 |
533
+ | cosine_recall@5 | 0.3435 |
534
+ | cosine_recall@10 | 0.5696 |
535
+ | cosine_ndcg@10 | 0.2812 |
536
+ | cosine_mrr@10 | 0.1947 |
537
+ | **cosine_map@100** | **0.2122** |
538
+
539
+ #### Information Retrieval
540
+ * Dataset: `dim_256`
541
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
542
+
543
+ | Metric | Value |
544
+ |:--------------------|:-----------|
545
+ | cosine_accuracy@1 | 0.0522 |
546
+ | cosine_accuracy@3 | 0.2087 |
547
+ | cosine_accuracy@5 | 0.3174 |
548
+ | cosine_accuracy@10 | 0.513 |
549
+ | cosine_precision@1 | 0.0522 |
550
+ | cosine_precision@3 | 0.0696 |
551
+ | cosine_precision@5 | 0.0635 |
552
+ | cosine_precision@10 | 0.0513 |
553
+ | cosine_recall@1 | 0.0522 |
554
+ | cosine_recall@3 | 0.2087 |
555
+ | cosine_recall@5 | 0.3174 |
556
+ | cosine_recall@10 | 0.513 |
557
+ | cosine_ndcg@10 | 0.2483 |
558
+ | cosine_mrr@10 | 0.1679 |
559
+ | **cosine_map@100** | **0.1893** |
560
+
561
+ #### Information Retrieval
562
+ * Dataset: `dim_128`
563
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
564
+
565
+ | Metric | Value |
566
+ |:--------------------|:-----------|
567
+ | cosine_accuracy@1 | 0.0565 |
568
+ | cosine_accuracy@3 | 0.2261 |
569
+ | cosine_accuracy@5 | 0.3261 |
570
+ | cosine_accuracy@10 | 0.5435 |
571
+ | cosine_precision@1 | 0.0565 |
572
+ | cosine_precision@3 | 0.0754 |
573
+ | cosine_precision@5 | 0.0652 |
574
+ | cosine_precision@10 | 0.0543 |
575
+ | cosine_recall@1 | 0.0565 |
576
+ | cosine_recall@3 | 0.2261 |
577
+ | cosine_recall@5 | 0.3261 |
578
+ | cosine_recall@10 | 0.5435 |
579
+ | cosine_ndcg@10 | 0.2661 |
580
+ | cosine_mrr@10 | 0.182 |
581
+ | **cosine_map@100** | **0.2004** |
582
+
583
+ #### Information Retrieval
584
+ * Dataset: `dim_64`
585
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
586
+
587
+ | Metric | Value |
588
+ |:--------------------|:-----------|
589
+ | cosine_accuracy@1 | 0.0565 |
590
+ | cosine_accuracy@3 | 0.2174 |
591
+ | cosine_accuracy@5 | 0.3174 |
592
+ | cosine_accuracy@10 | 0.5435 |
593
+ | cosine_precision@1 | 0.0565 |
594
+ | cosine_precision@3 | 0.0725 |
595
+ | cosine_precision@5 | 0.0635 |
596
+ | cosine_precision@10 | 0.0543 |
597
+ | cosine_recall@1 | 0.0565 |
598
+ | cosine_recall@3 | 0.2174 |
599
+ | cosine_recall@5 | 0.3174 |
600
+ | cosine_recall@10 | 0.5435 |
601
+ | cosine_ndcg@10 | 0.2641 |
602
+ | cosine_mrr@10 | 0.1797 |
603
+ | **cosine_map@100** | **0.1971** |
604
+
605
+ <!--
606
+ ## Bias, Risks and Limitations
607
+
608
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
609
+ -->
610
+
611
+ <!--
612
+ ### Recommendations
613
+
614
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
615
+ -->
616
+
617
+ ## Training Details
618
+
619
+ ### Training Dataset
620
+
621
+ #### json
622
+
623
+ * Dataset: json
624
+ * Size: 5,520 training samples
625
+ * Columns: <code>positive</code> and <code>anchor</code>
626
+ * Approximate statistics based on the first 1000 samples:
627
+ | | positive | anchor |
628
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
629
+ | type | string | string |
630
+ | details | <ul><li>min: 5 tokens</li><li>mean: 43.78 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.5 tokens</li><li>max: 51 tokens</li></ul> |
631
+ * Samples:
632
+ | positive | anchor |
633
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
634
+ | <code>L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble.</code> | <code>Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides?</code> |
635
+ | <code>Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres.</code> | <code>Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats?</code> |
636
+ | <code>Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès.</code> | <code>Quin és el benefici de la TBUS GRATUÏTA per a les persones majors?</code> |
637
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
638
+ ```json
639
+ {
640
+ "loss": "MultipleNegativesRankingLoss",
641
+ "matryoshka_dims": [
642
+ 1024,
643
+ 768,
644
+ 512,
645
+ 256,
646
+ 128,
647
+ 64
648
+ ],
649
+ "matryoshka_weights": [
650
+ 1,
651
+ 1,
652
+ 1,
653
+ 1,
654
+ 1,
655
+ 1
656
+ ],
657
+ "n_dims_per_step": -1
658
+ }
659
+ ```
660
+
661
+ ### Training Hyperparameters
662
+ #### Non-Default Hyperparameters
663
+
664
+ - `eval_strategy`: epoch
665
+ - `per_device_train_batch_size`: 16
666
+ - `per_device_eval_batch_size`: 16
667
+ - `gradient_accumulation_steps`: 16
668
+ - `learning_rate`: 2e-05
669
+ - `num_train_epochs`: 10
670
+ - `lr_scheduler_type`: cosine
671
+ - `warmup_ratio`: 0.2
672
+ - `bf16`: True
673
+ - `tf32`: True
674
+ - `load_best_model_at_end`: True
675
+ - `optim`: adamw_torch_fused
676
+ - `batch_sampler`: no_duplicates
677
+
678
+ #### All Hyperparameters
679
+ <details><summary>Click to expand</summary>
680
+
681
+ - `overwrite_output_dir`: False
682
+ - `do_predict`: False
683
+ - `eval_strategy`: epoch
684
+ - `prediction_loss_only`: True
685
+ - `per_device_train_batch_size`: 16
686
+ - `per_device_eval_batch_size`: 16
687
+ - `per_gpu_train_batch_size`: None
688
+ - `per_gpu_eval_batch_size`: None
689
+ - `gradient_accumulation_steps`: 16
690
+ - `eval_accumulation_steps`: None
691
+ - `torch_empty_cache_steps`: None
692
+ - `learning_rate`: 2e-05
693
+ - `weight_decay`: 0.0
694
+ - `adam_beta1`: 0.9
695
+ - `adam_beta2`: 0.999
696
+ - `adam_epsilon`: 1e-08
697
+ - `max_grad_norm`: 1.0
698
+ - `num_train_epochs`: 10
699
+ - `max_steps`: -1
700
+ - `lr_scheduler_type`: cosine
701
+ - `lr_scheduler_kwargs`: {}
702
+ - `warmup_ratio`: 0.2
703
+ - `warmup_steps`: 0
704
+ - `log_level`: passive
705
+ - `log_level_replica`: warning
706
+ - `log_on_each_node`: True
707
+ - `logging_nan_inf_filter`: True
708
+ - `save_safetensors`: True
709
+ - `save_on_each_node`: False
710
+ - `save_only_model`: False
711
+ - `restore_callback_states_from_checkpoint`: False
712
+ - `no_cuda`: False
713
+ - `use_cpu`: False
714
+ - `use_mps_device`: False
715
+ - `seed`: 42
716
+ - `data_seed`: None
717
+ - `jit_mode_eval`: False
718
+ - `use_ipex`: False
719
+ - `bf16`: True
720
+ - `fp16`: False
721
+ - `fp16_opt_level`: O1
722
+ - `half_precision_backend`: auto
723
+ - `bf16_full_eval`: False
724
+ - `fp16_full_eval`: False
725
+ - `tf32`: True
726
+ - `local_rank`: 0
727
+ - `ddp_backend`: None
728
+ - `tpu_num_cores`: None
729
+ - `tpu_metrics_debug`: False
730
+ - `debug`: []
731
+ - `dataloader_drop_last`: False
732
+ - `dataloader_num_workers`: 0
733
+ - `dataloader_prefetch_factor`: None
734
+ - `past_index`: -1
735
+ - `disable_tqdm`: False
736
+ - `remove_unused_columns`: True
737
+ - `label_names`: None
738
+ - `load_best_model_at_end`: True
739
+ - `ignore_data_skip`: False
740
+ - `fsdp`: []
741
+ - `fsdp_min_num_params`: 0
742
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
743
+ - `fsdp_transformer_layer_cls_to_wrap`: None
744
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
745
+ - `deepspeed`: None
746
+ - `label_smoothing_factor`: 0.0
747
+ - `optim`: adamw_torch_fused
748
+ - `optim_args`: None
749
+ - `adafactor`: False
750
+ - `group_by_length`: False
751
+ - `length_column_name`: length
752
+ - `ddp_find_unused_parameters`: None
753
+ - `ddp_bucket_cap_mb`: None
754
+ - `ddp_broadcast_buffers`: False
755
+ - `dataloader_pin_memory`: True
756
+ - `dataloader_persistent_workers`: False
757
+ - `skip_memory_metrics`: True
758
+ - `use_legacy_prediction_loop`: False
759
+ - `push_to_hub`: False
760
+ - `resume_from_checkpoint`: None
761
+ - `hub_model_id`: None
762
+ - `hub_strategy`: every_save
763
+ - `hub_private_repo`: False
764
+ - `hub_always_push`: False
765
+ - `gradient_checkpointing`: False
766
+ - `gradient_checkpointing_kwargs`: None
767
+ - `include_inputs_for_metrics`: False
768
+ - `eval_do_concat_batches`: True
769
+ - `fp16_backend`: auto
770
+ - `push_to_hub_model_id`: None
771
+ - `push_to_hub_organization`: None
772
+ - `mp_parameters`:
773
+ - `auto_find_batch_size`: False
774
+ - `full_determinism`: False
775
+ - `torchdynamo`: None
776
+ - `ray_scope`: last
777
+ - `ddp_timeout`: 1800
778
+ - `torch_compile`: False
779
+ - `torch_compile_backend`: None
780
+ - `torch_compile_mode`: None
781
+ - `dispatch_batches`: None
782
+ - `split_batches`: None
783
+ - `include_tokens_per_second`: False
784
+ - `include_num_input_tokens_seen`: False
785
+ - `neftune_noise_alpha`: None
786
+ - `optim_target_modules`: None
787
+ - `batch_eval_metrics`: False
788
+ - `eval_on_start`: False
789
+ - `eval_use_gather_object`: False
790
+ - `batch_sampler`: no_duplicates
791
+ - `multi_dataset_batch_sampler`: proportional
792
+
793
+ </details>
794
+
795
+ ### Training Logs
796
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
797
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
798
+ | 0.4638 | 10 | 4.0375 | - | - | - | - | - | - |
799
+ | 0.9275 | 20 | 3.2095 | - | - | - | - | - | - |
800
+ | 0.9739 | 21 | - | 0.1772 | 0.1818 | 0.1967 | 0.1911 | 0.1417 | 0.1750 |
801
+ | 1.3913 | 30 | 2.1843 | - | - | - | - | - | - |
802
+ | 1.8551 | 40 | 1.6095 | - | - | - | - | - | - |
803
+ | 1.9942 | 43 | - | 0.1889 | 0.1676 | 0.1961 | 0.1969 | 0.1834 | 0.1899 |
804
+ | 2.3188 | 50 | 1.2099 | - | - | - | - | - | - |
805
+ | 2.7826 | 60 | 0.909 | - | - | - | - | - | - |
806
+ | 2.9681 | 64 | - | 0.1998 | 0.1977 | 0.2164 | 0.2030 | 0.1972 | 0.2156 |
807
+ | 3.2464 | 70 | 0.7534 | - | - | - | - | - | - |
808
+ | 3.7101 | 80 | 0.6339 | - | - | - | - | - | - |
809
+ | 3.9884 | 86 | - | 0.2049 | 0.2024 | 0.1989 | 0.1935 | 0.2046 | 0.1949 |
810
+ | 4.1739 | 90 | 0.5423 | - | - | - | - | - | - |
811
+ | 4.6377 | 100 | 0.5135 | - | - | - | - | - | - |
812
+ | 4.9623 | 107 | - | 0.1967 | 0.2199 | 0.1892 | 0.2113 | 0.1957 | 0.2037 |
813
+ | 5.1014 | 110 | 0.4563 | - | - | - | - | - | - |
814
+ | 5.5652 | 120 | 0.3837 | - | - | - | - | - | - |
815
+ | 5.9826 | 129 | - | 0.2026 | 0.1898 | 0.1903 | 0.2035 | 0.2034 | 0.2187 |
816
+ | 6.0290 | 130 | 0.3991 | - | - | - | - | - | - |
817
+ | 6.4928 | 140 | 0.3996 | - | - | - | - | - | - |
818
+ | 6.9565 | 150 | 0.3225 | 0.2053 | 0.1866 | 0.2046 | 0.2083 | 0.1822 | 0.2086 |
819
+ | 7.4203 | 160 | 0.3407 | - | - | - | - | - | - |
820
+ | 7.8841 | 170 | 0.2982 | - | - | - | - | - | - |
821
+ | **7.9768** | **172** | **-** | **0.2092** | **0.2197** | **0.2005** | **0.2178** | **0.2063** | **0.2042** |
822
+ | 8.3478 | 180 | 0.3169 | - | - | - | - | - | - |
823
+ | 8.8116 | 190 | 0.2799 | - | - | - | - | - | - |
824
+ | 8.9971 | 194 | - | 0.2053 | 0.2215 | 0.1929 | 0.2191 | 0.2106 | 0.2170 |
825
+ | 9.2754 | 200 | 0.312 | - | - | - | - | - | - |
826
+ | 9.7391 | 210 | 0.2684 | 0.1876 | 0.2004 | 0.1893 | 0.2122 | 0.1971 | 0.1934 |
827
+
828
+ * The bold row denotes the saved checkpoint.
829
+
830
+ ### Framework Versions
831
+ - Python: 3.10.12
832
+ - Sentence Transformers: 3.1.1
833
+ - Transformers: 4.44.2
834
+ - PyTorch: 2.4.1+cu121
835
+ - Accelerate: 0.35.0.dev0
836
+ - Datasets: 3.0.1
837
+ - Tokenizers: 0.19.1
838
+
839
+ ## Citation
840
+
841
+ ### BibTeX
842
+
843
+ #### Sentence Transformers
844
+ ```bibtex
845
+ @inproceedings{reimers-2019-sentence-bert,
846
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
847
+ author = "Reimers, Nils and Gurevych, Iryna",
848
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
849
+ month = "11",
850
+ year = "2019",
851
+ publisher = "Association for Computational Linguistics",
852
+ url = "https://arxiv.org/abs/1908.10084",
853
+ }
854
+ ```
855
+
856
+ #### MatryoshkaLoss
857
+ ```bibtex
858
+ @misc{kusupati2024matryoshka,
859
+ title={Matryoshka Representation Learning},
860
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
861
+ year={2024},
862
+ eprint={2205.13147},
863
+ archivePrefix={arXiv},
864
+ primaryClass={cs.LG}
865
+ }
866
+ ```
867
+
868
+ #### MultipleNegativesRankingLoss
869
+ ```bibtex
870
+ @misc{henderson2017efficient,
871
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
872
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
873
+ year={2017},
874
+ eprint={1705.00652},
875
+ archivePrefix={arXiv},
876
+ primaryClass={cs.CL}
877
+ }
878
+ ```
879
+
880
+ <!--
881
+ ## Glossary
882
+
883
+ *Clearly define terms in order to be accessible across audiences.*
884
+ -->
885
+
886
+ <!--
887
+ ## Model Card Authors
888
+
889
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
890
+ -->
891
+
892
+ <!--
893
+ ## Model Card Contact
894
+
895
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
896
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:455cb8d974e63bdf1b943be852c7a38c673cf8dccd4f59bddc825c7f0ec750ed
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }