File size: 33,128 Bytes
6a178d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5520
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Pagar un rebut o una liquidació pendent de pagament
  sentences:
  - Què és el tràmit per pagar un rebut o liquidació?
  - Quin és el tràmit que permet la inscripció d'una entitat o associació?
  - Quin és el límit de temps per a la instal·lació de tanques provisionals?
- source_sentence: Mitjançant decret de data 11/10/2022 núm. 202204494 s'inicia el
    procés de concurrència competitiva per accedir a les parades vacants del mercat
    de les Fonts.
  sentences:
  - Quin és el mercat on es va iniciar el procés de concurrència competitiva per accedir
    a les parades vacants?
  - Puc sol·licitar un certificat històric d'empadronament per a una persona que ja
    no viu al municipi?
  - Necessito obtenir un duplicat del títol de dret funerari perquè he perdut l'original
- source_sentence: Comunicar les dades per realitzar la notificació electrònica de
    tots els procediments en què l’obligat legal sigui titular o part implicada, i
    hagi de ser notificat o notificada.
  sentences:
  - Quin és el paper de l'Ajuntament en la inspecció de les condicions específiques?
  - Quin és el tràmit relacionat amb la targeta ciutadana de serveis?
  - Qui és el titular o part implicada en els procediments?
- source_sentence: Aquest tràmit permet sol·licitar l'informe municipal sobre la integració
    social de persones estrangeres.
  sentences:
  - Puc canviar la concessió del meu dret funerari per una raó específica?
  - Quin és el procediment per a obtenir l'informe d'inserció social?
  - Quin és el propòsit de la formació en higiene alimentària
- source_sentence: Permet tramitar la baixa de les activitats esportives municipals.
  sentences:
  - Quin és el procés per a donar de baixa una activitat esportiva?
  - On es pot recollir els dorsals el dia de la cursa?
  - Quin és el benefici fiscal que es pot obtenir?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.1
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.22608695652173913
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.30434782608695654
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4956521739130435
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0753623188405797
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.060869565217391314
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04956521739130433
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.22608695652173913
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.30434782608695654
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4956521739130435
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2644535096144644
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19486714975845426
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21422014718167715
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.1
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.21304347826086956
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.49130434782608695
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07101449275362319
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06000000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04913043478260868
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.21304347826086956
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.49130434782608695
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2611989525147102
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19224465148378198
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21168860407432996
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.09565217391304348
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.25217391304347825
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3217391304347826
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5043478260869565
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09565217391304348
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08405797101449275
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06434782608695652
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05043478260869564
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09565217391304348
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.25217391304347825
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3217391304347826
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5043478260869565
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2736727362077943
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20330400276052454
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2225493022129085
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.09130434782608696
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.24347826086956523
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.32608695652173914
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4782608695652174
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09130434782608696
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.08115942028985507
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06521739130434782
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04782608695652173
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09130434782608696
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.24347826086956523
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.32608695652173914
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4782608695652174
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25842339032219125
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19112146307798494
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21262325852877148
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.09565217391304348
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2217391304347826
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.32608695652173914
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5130434782608696
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09565217391304348
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07391304347826087
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06521739130434782
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05130434782608694
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09565217391304348
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2217391304347826
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.32608695652173914
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5130434782608696
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2703816814799584
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1968685300207041
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21575875323163748
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.10434782608695652
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.23478260869565218
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3217391304347826
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.49130434782608695
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10434782608695652
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.0782608695652174
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06434782608695652
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.049130434782608694
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10434782608695652
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.23478260869565218
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3217391304347826
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.49130434782608695
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.268671836286108
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20097135955831624
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22058427749634182
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v5-5ep")
# Run inference
sentences = [
    'Permet tramitar la baixa de les activitats esportives municipals.',
    'Quin és el procés per a donar de baixa una activitat esportiva?',
    'Quin és el benefici fiscal que es pot obtenir?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1        |
| cosine_accuracy@3   | 0.2261     |
| cosine_accuracy@5   | 0.3043     |
| cosine_accuracy@10  | 0.4957     |
| cosine_precision@1  | 0.1        |
| cosine_precision@3  | 0.0754     |
| cosine_precision@5  | 0.0609     |
| cosine_precision@10 | 0.0496     |
| cosine_recall@1     | 0.1        |
| cosine_recall@3     | 0.2261     |
| cosine_recall@5     | 0.3043     |
| cosine_recall@10    | 0.4957     |
| cosine_ndcg@10      | 0.2645     |
| cosine_mrr@10       | 0.1949     |
| **cosine_map@100**  | **0.2142** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1        |
| cosine_accuracy@3   | 0.213      |
| cosine_accuracy@5   | 0.3        |
| cosine_accuracy@10  | 0.4913     |
| cosine_precision@1  | 0.1        |
| cosine_precision@3  | 0.071      |
| cosine_precision@5  | 0.06       |
| cosine_precision@10 | 0.0491     |
| cosine_recall@1     | 0.1        |
| cosine_recall@3     | 0.213      |
| cosine_recall@5     | 0.3        |
| cosine_recall@10    | 0.4913     |
| cosine_ndcg@10      | 0.2612     |
| cosine_mrr@10       | 0.1922     |
| **cosine_map@100**  | **0.2117** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0957     |
| cosine_accuracy@3   | 0.2522     |
| cosine_accuracy@5   | 0.3217     |
| cosine_accuracy@10  | 0.5043     |
| cosine_precision@1  | 0.0957     |
| cosine_precision@3  | 0.0841     |
| cosine_precision@5  | 0.0643     |
| cosine_precision@10 | 0.0504     |
| cosine_recall@1     | 0.0957     |
| cosine_recall@3     | 0.2522     |
| cosine_recall@5     | 0.3217     |
| cosine_recall@10    | 0.5043     |
| cosine_ndcg@10      | 0.2737     |
| cosine_mrr@10       | 0.2033     |
| **cosine_map@100**  | **0.2225** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0913     |
| cosine_accuracy@3   | 0.2435     |
| cosine_accuracy@5   | 0.3261     |
| cosine_accuracy@10  | 0.4783     |
| cosine_precision@1  | 0.0913     |
| cosine_precision@3  | 0.0812     |
| cosine_precision@5  | 0.0652     |
| cosine_precision@10 | 0.0478     |
| cosine_recall@1     | 0.0913     |
| cosine_recall@3     | 0.2435     |
| cosine_recall@5     | 0.3261     |
| cosine_recall@10    | 0.4783     |
| cosine_ndcg@10      | 0.2584     |
| cosine_mrr@10       | 0.1911     |
| **cosine_map@100**  | **0.2126** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0957     |
| cosine_accuracy@3   | 0.2217     |
| cosine_accuracy@5   | 0.3261     |
| cosine_accuracy@10  | 0.513      |
| cosine_precision@1  | 0.0957     |
| cosine_precision@3  | 0.0739     |
| cosine_precision@5  | 0.0652     |
| cosine_precision@10 | 0.0513     |
| cosine_recall@1     | 0.0957     |
| cosine_recall@3     | 0.2217     |
| cosine_recall@5     | 0.3261     |
| cosine_recall@10    | 0.513      |
| cosine_ndcg@10      | 0.2704     |
| cosine_mrr@10       | 0.1969     |
| **cosine_map@100**  | **0.2158** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1043     |
| cosine_accuracy@3   | 0.2348     |
| cosine_accuracy@5   | 0.3217     |
| cosine_accuracy@10  | 0.4913     |
| cosine_precision@1  | 0.1043     |
| cosine_precision@3  | 0.0783     |
| cosine_precision@5  | 0.0643     |
| cosine_precision@10 | 0.0491     |
| cosine_recall@1     | 0.1043     |
| cosine_recall@3     | 0.2348     |
| cosine_recall@5     | 0.3217     |
| cosine_recall@10    | 0.4913     |
| cosine_ndcg@10      | 0.2687     |
| cosine_mrr@10       | 0.201      |
| **cosine_map@100**  | **0.2206** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 5,520 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 43.7 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.51 tokens</li><li>max: 51 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                    | anchor                                                                                                                                                                 |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble.</code>                                                                                                                                             | <code>Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides?</code>                                                                   |
  | <code>Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres.</code>                                                                                                         | <code>Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats?</code> |
  | <code>Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès.</code> | <code>Quin és el benefici de la TBUS GRATUÏTA per a les persones majors?</code>                                                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.4638     | 10      | 4.122         | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.9275     | 20      | 2.7131        | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.9739     | 21      | -             | 0.2085                  | 0.1973                 | 0.1884                 | 0.2087                 | 0.1886                | 0.2177                 |
| 1.3913     | 30      | 1.6964        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.8551     | 40      | 1.2311        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.9942     | 43      | -             | 0.2148                  | 0.2135                 | 0.2170                 | 0.2351                 | 0.2091                | 0.2386                 |
| 2.3188     | 50      | 0.9216        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.7826     | 60      | 0.737         | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.9681     | 64      | -             | 0.2145                  | 0.2058                 | 0.2072                 | 0.2277                 | 0.2127                | 0.2085                 |
| 3.2464     | 70      | 0.6678        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.7101     | 80      | 0.555         | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.9884     | 86      | -             | 0.2028                  | 0.2154                 | 0.2117                 | 0.2331                 | 0.2113                | 0.2028                 |
| 4.1739     | 90      | 0.5542        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.6377     | 100     | 0.5058        | -                       | -                      | -                      | -                      | -                     | -                      |
| **4.8696** | **105** | **-**         | **0.2142**              | **0.2158**             | **0.2126**             | **0.2225**             | **0.2206**            | **0.2117**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->