---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5520
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Pagar un rebut o una liquidació pendent de pagament
sentences:
- Què és el tràmit per pagar un rebut o liquidació?
- Quin és el tràmit que permet la inscripció d'una entitat o associació?
- Quin és el límit de temps per a la instal·lació de tanques provisionals?
- source_sentence: Mitjançant decret de data 11/10/2022 núm. 202204494 s'inicia el
procés de concurrència competitiva per accedir a les parades vacants del mercat
de les Fonts.
sentences:
- Quin és el mercat on es va iniciar el procés de concurrència competitiva per accedir
a les parades vacants?
- Puc sol·licitar un certificat històric d'empadronament per a una persona que ja
no viu al municipi?
- Necessito obtenir un duplicat del títol de dret funerari perquè he perdut l'original
- source_sentence: Comunicar les dades per realitzar la notificació electrònica de
tots els procediments en què l’obligat legal sigui titular o part implicada, i
hagi de ser notificat o notificada.
sentences:
- Quin és el paper de l'Ajuntament en la inspecció de les condicions específiques?
- Quin és el tràmit relacionat amb la targeta ciutadana de serveis?
- Qui és el titular o part implicada en els procediments?
- source_sentence: Aquest tràmit permet sol·licitar l'informe municipal sobre la integració
social de persones estrangeres.
sentences:
- Puc canviar la concessió del meu dret funerari per una raó específica?
- Quin és el procediment per a obtenir l'informe d'inserció social?
- Quin és el propòsit de la formació en higiene alimentària
- source_sentence: Permet tramitar la baixa de les activitats esportives municipals.
sentences:
- Quin és el procés per a donar de baixa una activitat esportiva?
- On es pot recollir els dorsals el dia de la cursa?
- Quin és el benefici fiscal que es pot obtenir?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.22608695652173913
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.30434782608695654
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4956521739130435
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0753623188405797
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.060869565217391314
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04956521739130433
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.22608695652173913
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30434782608695654
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4956521739130435
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2644535096144644
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19486714975845426
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21422014718167715
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.21304347826086956
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49130434782608695
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07101449275362319
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06000000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04913043478260868
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21304347826086956
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49130434782608695
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2611989525147102
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19224465148378198
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21168860407432996
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.09565217391304348
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.25217391304347825
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3217391304347826
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5043478260869565
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09565217391304348
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08405797101449275
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06434782608695652
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05043478260869564
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09565217391304348
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.25217391304347825
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3217391304347826
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5043478260869565
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2736727362077943
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20330400276052454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2225493022129085
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.09130434782608696
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.24347826086956523
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32608695652173914
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4782608695652174
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09130434782608696
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08115942028985507
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06521739130434782
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04782608695652173
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09130434782608696
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.24347826086956523
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32608695652173914
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4782608695652174
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25842339032219125
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.19112146307798494
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21262325852877148
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.09565217391304348
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2217391304347826
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32608695652173914
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5130434782608696
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.09565217391304348
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07391304347826087
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06521739130434782
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05130434782608694
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09565217391304348
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2217391304347826
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.32608695652173914
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5130434782608696
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2703816814799584
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1968685300207041
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21575875323163748
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.10434782608695652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23478260869565218
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3217391304347826
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49130434782608695
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10434782608695652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0782608695652174
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06434782608695652
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.049130434782608694
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10434782608695652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23478260869565218
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3217391304347826
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49130434782608695
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.268671836286108
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20097135955831624
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22058427749634182
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v5-5ep")
# Run inference
sentences = [
'Permet tramitar la baixa de les activitats esportives municipals.',
'Quin és el procés per a donar de baixa una activitat esportiva?',
'Quin és el benefici fiscal que es pot obtenir?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.2261 |
| cosine_accuracy@5 | 0.3043 |
| cosine_accuracy@10 | 0.4957 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.0754 |
| cosine_precision@5 | 0.0609 |
| cosine_precision@10 | 0.0496 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.2261 |
| cosine_recall@5 | 0.3043 |
| cosine_recall@10 | 0.4957 |
| cosine_ndcg@10 | 0.2645 |
| cosine_mrr@10 | 0.1949 |
| **cosine_map@100** | **0.2142** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1 |
| cosine_accuracy@3 | 0.213 |
| cosine_accuracy@5 | 0.3 |
| cosine_accuracy@10 | 0.4913 |
| cosine_precision@1 | 0.1 |
| cosine_precision@3 | 0.071 |
| cosine_precision@5 | 0.06 |
| cosine_precision@10 | 0.0491 |
| cosine_recall@1 | 0.1 |
| cosine_recall@3 | 0.213 |
| cosine_recall@5 | 0.3 |
| cosine_recall@10 | 0.4913 |
| cosine_ndcg@10 | 0.2612 |
| cosine_mrr@10 | 0.1922 |
| **cosine_map@100** | **0.2117** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0957 |
| cosine_accuracy@3 | 0.2522 |
| cosine_accuracy@5 | 0.3217 |
| cosine_accuracy@10 | 0.5043 |
| cosine_precision@1 | 0.0957 |
| cosine_precision@3 | 0.0841 |
| cosine_precision@5 | 0.0643 |
| cosine_precision@10 | 0.0504 |
| cosine_recall@1 | 0.0957 |
| cosine_recall@3 | 0.2522 |
| cosine_recall@5 | 0.3217 |
| cosine_recall@10 | 0.5043 |
| cosine_ndcg@10 | 0.2737 |
| cosine_mrr@10 | 0.2033 |
| **cosine_map@100** | **0.2225** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0913 |
| cosine_accuracy@3 | 0.2435 |
| cosine_accuracy@5 | 0.3261 |
| cosine_accuracy@10 | 0.4783 |
| cosine_precision@1 | 0.0913 |
| cosine_precision@3 | 0.0812 |
| cosine_precision@5 | 0.0652 |
| cosine_precision@10 | 0.0478 |
| cosine_recall@1 | 0.0913 |
| cosine_recall@3 | 0.2435 |
| cosine_recall@5 | 0.3261 |
| cosine_recall@10 | 0.4783 |
| cosine_ndcg@10 | 0.2584 |
| cosine_mrr@10 | 0.1911 |
| **cosine_map@100** | **0.2126** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0957 |
| cosine_accuracy@3 | 0.2217 |
| cosine_accuracy@5 | 0.3261 |
| cosine_accuracy@10 | 0.513 |
| cosine_precision@1 | 0.0957 |
| cosine_precision@3 | 0.0739 |
| cosine_precision@5 | 0.0652 |
| cosine_precision@10 | 0.0513 |
| cosine_recall@1 | 0.0957 |
| cosine_recall@3 | 0.2217 |
| cosine_recall@5 | 0.3261 |
| cosine_recall@10 | 0.513 |
| cosine_ndcg@10 | 0.2704 |
| cosine_mrr@10 | 0.1969 |
| **cosine_map@100** | **0.2158** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1043 |
| cosine_accuracy@3 | 0.2348 |
| cosine_accuracy@5 | 0.3217 |
| cosine_accuracy@10 | 0.4913 |
| cosine_precision@1 | 0.1043 |
| cosine_precision@3 | 0.0783 |
| cosine_precision@5 | 0.0643 |
| cosine_precision@10 | 0.0491 |
| cosine_recall@1 | 0.1043 |
| cosine_recall@3 | 0.2348 |
| cosine_recall@5 | 0.3217 |
| cosine_recall@10 | 0.4913 |
| cosine_ndcg@10 | 0.2687 |
| cosine_mrr@10 | 0.201 |
| **cosine_map@100** | **0.2206** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 5,520 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble.
| Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides?
|
| Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres.
| Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats?
|
| Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès.
| Quin és el benefici de la TBUS GRATUÏTA per a les persones majors?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters