adriansanz commited on
Commit
b4ed319
·
verified ·
1 Parent(s): 76d3898

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:6468
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: El seu objecte és que -prèviament a la seva execució material-
31
+ l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
32
+ així com a les ordenances municipals sobre l’ús del sòl i edificació.
33
+ sentences:
34
+ - Quin és el paper de les ordenances municipals en la llicència d'extracció d'àrids
35
+ i explotació de pedreres?
36
+ - Quin és el percentatge de bonificació que es pot obtenir?
37
+ - Quin és el propòsit del tràmit d'adjudicació d'habitatges socials i d'emergència?
38
+ - source_sentence: La renda és un element important en la tramitació d'un ajornament
39
+ o fraccionament, ja que es té en compte per determinar si el sol·licitant compleix
40
+ els requisits per a sol·licitar el criteri excepcional.
41
+ sentences:
42
+ - Quin és el paper de la renda en la tramitació d'un ajornament o fraccionament?
43
+ - Quin és l'objectiu del tràmit C03?
44
+ - Quin és el paper de les ordenances municipals en la llicència de parcel·lació?
45
+ - source_sentence: L’article 14 de la llei 39/2015 estableix l’obligatorietat de l’ús
46
+ de mitjans electrònics, informàtics o telemàtics per desenvolupar totes les fases
47
+ del procediment de contractació.
48
+ sentences:
49
+ - Quin és el paper de les ordenances municipals sobre l’ús del sòl i edificació
50
+ en el tràmit de modificació substancial de la llicència d'obres?
51
+ - Quin és el requisit per a la intervenció d'una persona tècnica?
52
+ - Quin és el propòsit de l’article 14 de la llei 39/2015?
53
+ - source_sentence: El seu objecte és que -prèviament a la seva execució material-
54
+ l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
55
+ així com a les ordenances municipals sobre l’ús del sòl i edificació.
56
+ sentences:
57
+ - Quin és el paper del planejament en el tràmit de llicència d'obres per l'obertura,
58
+ la pavimentació i la modificació de camins rurals?
59
+ - Quin és el requisit per presentar una sol·licitud?
60
+ - Quin és el resultat de la falta de presentació de la documentació tècnica corresponent?
61
+ - source_sentence: L’Ajuntament de Sant Quirze del Vallès reconeix un dret preferent
62
+ al titular del dret funerari sobre la corresponent sepultura o al successor o
63
+ causahavent de l’anterior titular d’aquest dret, que permet adquirir de nou el
64
+ dret funerari referit, sobre la mateixa sepultura, un cop el dret atorgat ha exhaurit
65
+ el termini de vigència
66
+ sentences:
67
+ - Quin és el requisit per a les instal·lacions solars per mantenir la bonificació?
68
+ - Quin és el paper del cens electoral en les eleccions?
69
+ - Quan es pot adquirir de nou el dret funerari?
70
+ model-index:
71
+ - name: SentenceTransformer based on BAAI/bge-m3
72
+ results:
73
+ - task:
74
+ type: information-retrieval
75
+ name: Information Retrieval
76
+ dataset:
77
+ name: dim 1024
78
+ type: dim_1024
79
+ metrics:
80
+ - type: cosine_accuracy@1
81
+ value: 0.10173160173160173
82
+ name: Cosine Accuracy@1
83
+ - type: cosine_accuracy@3
84
+ value: 0.27705627705627706
85
+ name: Cosine Accuracy@3
86
+ - type: cosine_accuracy@5
87
+ value: 0.36796536796536794
88
+ name: Cosine Accuracy@5
89
+ - type: cosine_accuracy@10
90
+ value: 0.48268398268398266
91
+ name: Cosine Accuracy@10
92
+ - type: cosine_precision@1
93
+ value: 0.10173160173160173
94
+ name: Cosine Precision@1
95
+ - type: cosine_precision@3
96
+ value: 0.09235209235209235
97
+ name: Cosine Precision@3
98
+ - type: cosine_precision@5
99
+ value: 0.0735930735930736
100
+ name: Cosine Precision@5
101
+ - type: cosine_precision@10
102
+ value: 0.04826839826839826
103
+ name: Cosine Precision@10
104
+ - type: cosine_recall@1
105
+ value: 0.10173160173160173
106
+ name: Cosine Recall@1
107
+ - type: cosine_recall@3
108
+ value: 0.27705627705627706
109
+ name: Cosine Recall@3
110
+ - type: cosine_recall@5
111
+ value: 0.36796536796536794
112
+ name: Cosine Recall@5
113
+ - type: cosine_recall@10
114
+ value: 0.48268398268398266
115
+ name: Cosine Recall@10
116
+ - type: cosine_ndcg@10
117
+ value: 0.27573421573267004
118
+ name: Cosine Ndcg@10
119
+ - type: cosine_mrr@10
120
+ value: 0.21126485947914525
121
+ name: Cosine Mrr@10
122
+ - type: cosine_map@100
123
+ value: 0.22874042563037256
124
+ name: Cosine Map@100
125
+ - task:
126
+ type: information-retrieval
127
+ name: Information Retrieval
128
+ dataset:
129
+ name: dim 768
130
+ type: dim_768
131
+ metrics:
132
+ - type: cosine_accuracy@1
133
+ value: 0.11904761904761904
134
+ name: Cosine Accuracy@1
135
+ - type: cosine_accuracy@3
136
+ value: 0.29004329004329005
137
+ name: Cosine Accuracy@3
138
+ - type: cosine_accuracy@5
139
+ value: 0.3658008658008658
140
+ name: Cosine Accuracy@5
141
+ - type: cosine_accuracy@10
142
+ value: 0.49567099567099565
143
+ name: Cosine Accuracy@10
144
+ - type: cosine_precision@1
145
+ value: 0.11904761904761904
146
+ name: Cosine Precision@1
147
+ - type: cosine_precision@3
148
+ value: 0.09668109668109669
149
+ name: Cosine Precision@3
150
+ - type: cosine_precision@5
151
+ value: 0.07316017316017315
152
+ name: Cosine Precision@5
153
+ - type: cosine_precision@10
154
+ value: 0.049567099567099565
155
+ name: Cosine Precision@10
156
+ - type: cosine_recall@1
157
+ value: 0.11904761904761904
158
+ name: Cosine Recall@1
159
+ - type: cosine_recall@3
160
+ value: 0.29004329004329005
161
+ name: Cosine Recall@3
162
+ - type: cosine_recall@5
163
+ value: 0.3658008658008658
164
+ name: Cosine Recall@5
165
+ - type: cosine_recall@10
166
+ value: 0.49567099567099565
167
+ name: Cosine Recall@10
168
+ - type: cosine_ndcg@10
169
+ value: 0.2892077987787756
170
+ name: Cosine Ndcg@10
171
+ - type: cosine_mrr@10
172
+ value: 0.22525767882910738
173
+ name: Cosine Mrr@10
174
+ - type: cosine_map@100
175
+ value: 0.24276232307204765
176
+ name: Cosine Map@100
177
+ - task:
178
+ type: information-retrieval
179
+ name: Information Retrieval
180
+ dataset:
181
+ name: dim 512
182
+ type: dim_512
183
+ metrics:
184
+ - type: cosine_accuracy@1
185
+ value: 0.10822510822510822
186
+ name: Cosine Accuracy@1
187
+ - type: cosine_accuracy@3
188
+ value: 0.2662337662337662
189
+ name: Cosine Accuracy@3
190
+ - type: cosine_accuracy@5
191
+ value: 0.36363636363636365
192
+ name: Cosine Accuracy@5
193
+ - type: cosine_accuracy@10
194
+ value: 0.5064935064935064
195
+ name: Cosine Accuracy@10
196
+ - type: cosine_precision@1
197
+ value: 0.10822510822510822
198
+ name: Cosine Precision@1
199
+ - type: cosine_precision@3
200
+ value: 0.08874458874458875
201
+ name: Cosine Precision@3
202
+ - type: cosine_precision@5
203
+ value: 0.07272727272727272
204
+ name: Cosine Precision@5
205
+ - type: cosine_precision@10
206
+ value: 0.050649350649350645
207
+ name: Cosine Precision@10
208
+ - type: cosine_recall@1
209
+ value: 0.10822510822510822
210
+ name: Cosine Recall@1
211
+ - type: cosine_recall@3
212
+ value: 0.2662337662337662
213
+ name: Cosine Recall@3
214
+ - type: cosine_recall@5
215
+ value: 0.36363636363636365
216
+ name: Cosine Recall@5
217
+ - type: cosine_recall@10
218
+ value: 0.5064935064935064
219
+ name: Cosine Recall@10
220
+ - type: cosine_ndcg@10
221
+ value: 0.28386807922368074
222
+ name: Cosine Ndcg@10
223
+ - type: cosine_mrr@10
224
+ value: 0.21557239057239053
225
+ name: Cosine Mrr@10
226
+ - type: cosine_map@100
227
+ value: 0.23234161860560523
228
+ name: Cosine Map@100
229
+ - task:
230
+ type: information-retrieval
231
+ name: Information Retrieval
232
+ dataset:
233
+ name: dim 256
234
+ type: dim_256
235
+ metrics:
236
+ - type: cosine_accuracy@1
237
+ value: 0.11471861471861472
238
+ name: Cosine Accuracy@1
239
+ - type: cosine_accuracy@3
240
+ value: 0.24025974025974026
241
+ name: Cosine Accuracy@3
242
+ - type: cosine_accuracy@5
243
+ value: 0.3398268398268398
244
+ name: Cosine Accuracy@5
245
+ - type: cosine_accuracy@10
246
+ value: 0.4805194805194805
247
+ name: Cosine Accuracy@10
248
+ - type: cosine_precision@1
249
+ value: 0.11471861471861472
250
+ name: Cosine Precision@1
251
+ - type: cosine_precision@3
252
+ value: 0.08008658008658008
253
+ name: Cosine Precision@3
254
+ - type: cosine_precision@5
255
+ value: 0.06796536796536796
256
+ name: Cosine Precision@5
257
+ - type: cosine_precision@10
258
+ value: 0.04805194805194805
259
+ name: Cosine Precision@10
260
+ - type: cosine_recall@1
261
+ value: 0.11471861471861472
262
+ name: Cosine Recall@1
263
+ - type: cosine_recall@3
264
+ value: 0.24025974025974026
265
+ name: Cosine Recall@3
266
+ - type: cosine_recall@5
267
+ value: 0.3398268398268398
268
+ name: Cosine Recall@5
269
+ - type: cosine_recall@10
270
+ value: 0.4805194805194805
271
+ name: Cosine Recall@10
272
+ - type: cosine_ndcg@10
273
+ value: 0.2749619650624931
274
+ name: Cosine Ndcg@10
275
+ - type: cosine_mrr@10
276
+ value: 0.21201642273070856
277
+ name: Cosine Mrr@10
278
+ - type: cosine_map@100
279
+ value: 0.23043548788604293
280
+ name: Cosine Map@100
281
+ - task:
282
+ type: information-retrieval
283
+ name: Information Retrieval
284
+ dataset:
285
+ name: dim 128
286
+ type: dim_128
287
+ metrics:
288
+ - type: cosine_accuracy@1
289
+ value: 0.11255411255411256
290
+ name: Cosine Accuracy@1
291
+ - type: cosine_accuracy@3
292
+ value: 0.26406926406926406
293
+ name: Cosine Accuracy@3
294
+ - type: cosine_accuracy@5
295
+ value: 0.329004329004329
296
+ name: Cosine Accuracy@5
297
+ - type: cosine_accuracy@10
298
+ value: 0.487012987012987
299
+ name: Cosine Accuracy@10
300
+ - type: cosine_precision@1
301
+ value: 0.11255411255411256
302
+ name: Cosine Precision@1
303
+ - type: cosine_precision@3
304
+ value: 0.08802308802308802
305
+ name: Cosine Precision@3
306
+ - type: cosine_precision@5
307
+ value: 0.0658008658008658
308
+ name: Cosine Precision@5
309
+ - type: cosine_precision@10
310
+ value: 0.048701298701298704
311
+ name: Cosine Precision@10
312
+ - type: cosine_recall@1
313
+ value: 0.11255411255411256
314
+ name: Cosine Recall@1
315
+ - type: cosine_recall@3
316
+ value: 0.26406926406926406
317
+ name: Cosine Recall@3
318
+ - type: cosine_recall@5
319
+ value: 0.329004329004329
320
+ name: Cosine Recall@5
321
+ - type: cosine_recall@10
322
+ value: 0.487012987012987
323
+ name: Cosine Recall@10
324
+ - type: cosine_ndcg@10
325
+ value: 0.27907708560411776
326
+ name: Cosine Ndcg@10
327
+ - type: cosine_mrr@10
328
+ value: 0.21522795987081703
329
+ name: Cosine Mrr@10
330
+ - type: cosine_map@100
331
+ value: 0.23398722217128723
332
+ name: Cosine Map@100
333
+ - task:
334
+ type: information-retrieval
335
+ name: Information Retrieval
336
+ dataset:
337
+ name: dim 64
338
+ type: dim_64
339
+ metrics:
340
+ - type: cosine_accuracy@1
341
+ value: 0.1038961038961039
342
+ name: Cosine Accuracy@1
343
+ - type: cosine_accuracy@3
344
+ value: 0.2619047619047619
345
+ name: Cosine Accuracy@3
346
+ - type: cosine_accuracy@5
347
+ value: 0.3354978354978355
348
+ name: Cosine Accuracy@5
349
+ - type: cosine_accuracy@10
350
+ value: 0.474025974025974
351
+ name: Cosine Accuracy@10
352
+ - type: cosine_precision@1
353
+ value: 0.1038961038961039
354
+ name: Cosine Precision@1
355
+ - type: cosine_precision@3
356
+ value: 0.0873015873015873
357
+ name: Cosine Precision@3
358
+ - type: cosine_precision@5
359
+ value: 0.0670995670995671
360
+ name: Cosine Precision@5
361
+ - type: cosine_precision@10
362
+ value: 0.0474025974025974
363
+ name: Cosine Precision@10
364
+ - type: cosine_recall@1
365
+ value: 0.1038961038961039
366
+ name: Cosine Recall@1
367
+ - type: cosine_recall@3
368
+ value: 0.2619047619047619
369
+ name: Cosine Recall@3
370
+ - type: cosine_recall@5
371
+ value: 0.3354978354978355
372
+ name: Cosine Recall@5
373
+ - type: cosine_recall@10
374
+ value: 0.474025974025974
375
+ name: Cosine Recall@10
376
+ - type: cosine_ndcg@10
377
+ value: 0.2700415740619265
378
+ name: Cosine Ndcg@10
379
+ - type: cosine_mrr@10
380
+ value: 0.20714285714285718
381
+ name: Cosine Mrr@10
382
+ - type: cosine_map@100
383
+ value: 0.22556246902969454
384
+ name: Cosine Map@100
385
+ ---
386
+
387
+ # SentenceTransformer based on BAAI/bge-m3
388
+
389
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
390
+
391
+ ## Model Details
392
+
393
+ ### Model Description
394
+ - **Model Type:** Sentence Transformer
395
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
396
+ - **Maximum Sequence Length:** 8192 tokens
397
+ - **Output Dimensionality:** 1024 tokens
398
+ - **Similarity Function:** Cosine Similarity
399
+ - **Training Dataset:**
400
+ - json
401
+ <!-- - **Language:** Unknown -->
402
+ <!-- - **License:** Unknown -->
403
+
404
+ ### Model Sources
405
+
406
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
407
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
408
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
409
+
410
+ ### Full Model Architecture
411
+
412
+ ```
413
+ SentenceTransformer(
414
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
415
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
416
+ (2): Normalize()
417
+ )
418
+ ```
419
+
420
+ ## Usage
421
+
422
+ ### Direct Usage (Sentence Transformers)
423
+
424
+ First install the Sentence Transformers library:
425
+
426
+ ```bash
427
+ pip install -U sentence-transformers
428
+ ```
429
+
430
+ Then you can load this model and run inference.
431
+ ```python
432
+ from sentence_transformers import SentenceTransformer
433
+
434
+ # Download from the 🤗 Hub
435
+ model = SentenceTransformer("adriansanz/ST-tramits-SQV-006-5ep")
436
+ # Run inference
437
+ sentences = [
438
+ 'L’Ajuntament de Sant Quirze del Vallès reconeix un dret preferent al titular del dret funerari sobre la corresponent sepultura o al successor o causahavent de l’anterior titular d’aquest dret, que permet adquirir de nou el dret funerari referit, sobre la mateixa sepultura, un cop el dret atorgat ha exhaurit el termini de vigència',
439
+ 'Quan es pot adquirir de nou el dret funerari?',
440
+ 'Quin és el paper del cens electoral en les eleccions?',
441
+ ]
442
+ embeddings = model.encode(sentences)
443
+ print(embeddings.shape)
444
+ # [3, 1024]
445
+
446
+ # Get the similarity scores for the embeddings
447
+ similarities = model.similarity(embeddings, embeddings)
448
+ print(similarities.shape)
449
+ # [3, 3]
450
+ ```
451
+
452
+ <!--
453
+ ### Direct Usage (Transformers)
454
+
455
+ <details><summary>Click to see the direct usage in Transformers</summary>
456
+
457
+ </details>
458
+ -->
459
+
460
+ <!--
461
+ ### Downstream Usage (Sentence Transformers)
462
+
463
+ You can finetune this model on your own dataset.
464
+
465
+ <details><summary>Click to expand</summary>
466
+
467
+ </details>
468
+ -->
469
+
470
+ <!--
471
+ ### Out-of-Scope Use
472
+
473
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
474
+ -->
475
+
476
+ ## Evaluation
477
+
478
+ ### Metrics
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_1024`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.1017 |
487
+ | cosine_accuracy@3 | 0.2771 |
488
+ | cosine_accuracy@5 | 0.368 |
489
+ | cosine_accuracy@10 | 0.4827 |
490
+ | cosine_precision@1 | 0.1017 |
491
+ | cosine_precision@3 | 0.0924 |
492
+ | cosine_precision@5 | 0.0736 |
493
+ | cosine_precision@10 | 0.0483 |
494
+ | cosine_recall@1 | 0.1017 |
495
+ | cosine_recall@3 | 0.2771 |
496
+ | cosine_recall@5 | 0.368 |
497
+ | cosine_recall@10 | 0.4827 |
498
+ | cosine_ndcg@10 | 0.2757 |
499
+ | cosine_mrr@10 | 0.2113 |
500
+ | **cosine_map@100** | **0.2287** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_768`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.119 |
509
+ | cosine_accuracy@3 | 0.29 |
510
+ | cosine_accuracy@5 | 0.3658 |
511
+ | cosine_accuracy@10 | 0.4957 |
512
+ | cosine_precision@1 | 0.119 |
513
+ | cosine_precision@3 | 0.0967 |
514
+ | cosine_precision@5 | 0.0732 |
515
+ | cosine_precision@10 | 0.0496 |
516
+ | cosine_recall@1 | 0.119 |
517
+ | cosine_recall@3 | 0.29 |
518
+ | cosine_recall@5 | 0.3658 |
519
+ | cosine_recall@10 | 0.4957 |
520
+ | cosine_ndcg@10 | 0.2892 |
521
+ | cosine_mrr@10 | 0.2253 |
522
+ | **cosine_map@100** | **0.2428** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_512`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.1082 |
531
+ | cosine_accuracy@3 | 0.2662 |
532
+ | cosine_accuracy@5 | 0.3636 |
533
+ | cosine_accuracy@10 | 0.5065 |
534
+ | cosine_precision@1 | 0.1082 |
535
+ | cosine_precision@3 | 0.0887 |
536
+ | cosine_precision@5 | 0.0727 |
537
+ | cosine_precision@10 | 0.0506 |
538
+ | cosine_recall@1 | 0.1082 |
539
+ | cosine_recall@3 | 0.2662 |
540
+ | cosine_recall@5 | 0.3636 |
541
+ | cosine_recall@10 | 0.5065 |
542
+ | cosine_ndcg@10 | 0.2839 |
543
+ | cosine_mrr@10 | 0.2156 |
544
+ | **cosine_map@100** | **0.2323** |
545
+
546
+ #### Information Retrieval
547
+ * Dataset: `dim_256`
548
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
549
+
550
+ | Metric | Value |
551
+ |:--------------------|:-----------|
552
+ | cosine_accuracy@1 | 0.1147 |
553
+ | cosine_accuracy@3 | 0.2403 |
554
+ | cosine_accuracy@5 | 0.3398 |
555
+ | cosine_accuracy@10 | 0.4805 |
556
+ | cosine_precision@1 | 0.1147 |
557
+ | cosine_precision@3 | 0.0801 |
558
+ | cosine_precision@5 | 0.068 |
559
+ | cosine_precision@10 | 0.0481 |
560
+ | cosine_recall@1 | 0.1147 |
561
+ | cosine_recall@3 | 0.2403 |
562
+ | cosine_recall@5 | 0.3398 |
563
+ | cosine_recall@10 | 0.4805 |
564
+ | cosine_ndcg@10 | 0.275 |
565
+ | cosine_mrr@10 | 0.212 |
566
+ | **cosine_map@100** | **0.2304** |
567
+
568
+ #### Information Retrieval
569
+ * Dataset: `dim_128`
570
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
571
+
572
+ | Metric | Value |
573
+ |:--------------------|:----------|
574
+ | cosine_accuracy@1 | 0.1126 |
575
+ | cosine_accuracy@3 | 0.2641 |
576
+ | cosine_accuracy@5 | 0.329 |
577
+ | cosine_accuracy@10 | 0.487 |
578
+ | cosine_precision@1 | 0.1126 |
579
+ | cosine_precision@3 | 0.088 |
580
+ | cosine_precision@5 | 0.0658 |
581
+ | cosine_precision@10 | 0.0487 |
582
+ | cosine_recall@1 | 0.1126 |
583
+ | cosine_recall@3 | 0.2641 |
584
+ | cosine_recall@5 | 0.329 |
585
+ | cosine_recall@10 | 0.487 |
586
+ | cosine_ndcg@10 | 0.2791 |
587
+ | cosine_mrr@10 | 0.2152 |
588
+ | **cosine_map@100** | **0.234** |
589
+
590
+ #### Information Retrieval
591
+ * Dataset: `dim_64`
592
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
593
+
594
+ | Metric | Value |
595
+ |:--------------------|:-----------|
596
+ | cosine_accuracy@1 | 0.1039 |
597
+ | cosine_accuracy@3 | 0.2619 |
598
+ | cosine_accuracy@5 | 0.3355 |
599
+ | cosine_accuracy@10 | 0.474 |
600
+ | cosine_precision@1 | 0.1039 |
601
+ | cosine_precision@3 | 0.0873 |
602
+ | cosine_precision@5 | 0.0671 |
603
+ | cosine_precision@10 | 0.0474 |
604
+ | cosine_recall@1 | 0.1039 |
605
+ | cosine_recall@3 | 0.2619 |
606
+ | cosine_recall@5 | 0.3355 |
607
+ | cosine_recall@10 | 0.474 |
608
+ | cosine_ndcg@10 | 0.27 |
609
+ | cosine_mrr@10 | 0.2071 |
610
+ | **cosine_map@100** | **0.2256** |
611
+
612
+ <!--
613
+ ## Bias, Risks and Limitations
614
+
615
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
616
+ -->
617
+
618
+ <!--
619
+ ### Recommendations
620
+
621
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
622
+ -->
623
+
624
+ ## Training Details
625
+
626
+ ### Training Dataset
627
+
628
+ #### json
629
+
630
+ * Dataset: json
631
+ * Size: 6,468 training samples
632
+ * Columns: <code>positive</code> and <code>anchor</code>
633
+ * Approximate statistics based on the first 1000 samples:
634
+ | | positive | anchor |
635
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
636
+ | type | string | string |
637
+ | details | <ul><li>min: 5 tokens</li><li>mean: 39.4 tokens</li><li>max: 168 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.48 tokens</li><li>max: 44 tokens</li></ul> |
638
+ * Samples:
639
+ | positive | anchor |
640
+ |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------|
641
+ | <code>Aquest tràmit permet la inscripció al padró dels canvis de domicili dins de Sant Quirze del Vallès...</code> | <code>Quin és el benefici de la inscripció al Padró d'Habitants?</code> |
642
+ | <code>Els recursos que es poden oferir al banc de recursos són: MATERIALS, PROFESSIONALS i SOCIALS.</code> | <code>Quins tipus de recursos es poden oferir al banc de recursos?</code> |
643
+ | <code>El termini per a la presentació de sol·licituds serà del 8 al 21 de maig de 2024, ambdós inclosos.</code> | <code>Quin és el termini per a la presentació de sol·licituds per a la preinscripció a l'Escola Bressol Municipal El Patufet?</code> |
644
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
645
+ ```json
646
+ {
647
+ "loss": "MultipleNegativesRankingLoss",
648
+ "matryoshka_dims": [
649
+ 1024,
650
+ 768,
651
+ 512,
652
+ 256,
653
+ 128,
654
+ 64
655
+ ],
656
+ "matryoshka_weights": [
657
+ 1,
658
+ 1,
659
+ 1,
660
+ 1,
661
+ 1,
662
+ 1
663
+ ],
664
+ "n_dims_per_step": -1
665
+ }
666
+ ```
667
+
668
+ ### Training Hyperparameters
669
+ #### Non-Default Hyperparameters
670
+
671
+ - `eval_strategy`: epoch
672
+ - `per_device_train_batch_size`: 16
673
+ - `per_device_eval_batch_size`: 16
674
+ - `gradient_accumulation_steps`: 16
675
+ - `learning_rate`: 2e-05
676
+ - `num_train_epochs`: 5
677
+ - `lr_scheduler_type`: cosine
678
+ - `warmup_ratio`: 0.2
679
+ - `bf16`: True
680
+ - `tf32`: True
681
+ - `load_best_model_at_end`: True
682
+ - `optim`: adamw_torch_fused
683
+ - `batch_sampler`: no_duplicates
684
+
685
+ #### All Hyperparameters
686
+ <details><summary>Click to expand</summary>
687
+
688
+ - `overwrite_output_dir`: False
689
+ - `do_predict`: False
690
+ - `eval_strategy`: epoch
691
+ - `prediction_loss_only`: True
692
+ - `per_device_train_batch_size`: 16
693
+ - `per_device_eval_batch_size`: 16
694
+ - `per_gpu_train_batch_size`: None
695
+ - `per_gpu_eval_batch_size`: None
696
+ - `gradient_accumulation_steps`: 16
697
+ - `eval_accumulation_steps`: None
698
+ - `torch_empty_cache_steps`: None
699
+ - `learning_rate`: 2e-05
700
+ - `weight_decay`: 0.0
701
+ - `adam_beta1`: 0.9
702
+ - `adam_beta2`: 0.999
703
+ - `adam_epsilon`: 1e-08
704
+ - `max_grad_norm`: 1.0
705
+ - `num_train_epochs`: 5
706
+ - `max_steps`: -1
707
+ - `lr_scheduler_type`: cosine
708
+ - `lr_scheduler_kwargs`: {}
709
+ - `warmup_ratio`: 0.2
710
+ - `warmup_steps`: 0
711
+ - `log_level`: passive
712
+ - `log_level_replica`: warning
713
+ - `log_on_each_node`: True
714
+ - `logging_nan_inf_filter`: True
715
+ - `save_safetensors`: True
716
+ - `save_on_each_node`: False
717
+ - `save_only_model`: False
718
+ - `restore_callback_states_from_checkpoint`: False
719
+ - `no_cuda`: False
720
+ - `use_cpu`: False
721
+ - `use_mps_device`: False
722
+ - `seed`: 42
723
+ - `data_seed`: None
724
+ - `jit_mode_eval`: False
725
+ - `use_ipex`: False
726
+ - `bf16`: True
727
+ - `fp16`: False
728
+ - `fp16_opt_level`: O1
729
+ - `half_precision_backend`: auto
730
+ - `bf16_full_eval`: False
731
+ - `fp16_full_eval`: False
732
+ - `tf32`: True
733
+ - `local_rank`: 0
734
+ - `ddp_backend`: None
735
+ - `tpu_num_cores`: None
736
+ - `tpu_metrics_debug`: False
737
+ - `debug`: []
738
+ - `dataloader_drop_last`: False
739
+ - `dataloader_num_workers`: 0
740
+ - `dataloader_prefetch_factor`: None
741
+ - `past_index`: -1
742
+ - `disable_tqdm`: False
743
+ - `remove_unused_columns`: True
744
+ - `label_names`: None
745
+ - `load_best_model_at_end`: True
746
+ - `ignore_data_skip`: False
747
+ - `fsdp`: []
748
+ - `fsdp_min_num_params`: 0
749
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
750
+ - `fsdp_transformer_layer_cls_to_wrap`: None
751
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
752
+ - `deepspeed`: None
753
+ - `label_smoothing_factor`: 0.0
754
+ - `optim`: adamw_torch_fused
755
+ - `optim_args`: None
756
+ - `adafactor`: False
757
+ - `group_by_length`: False
758
+ - `length_column_name`: length
759
+ - `ddp_find_unused_parameters`: None
760
+ - `ddp_bucket_cap_mb`: None
761
+ - `ddp_broadcast_buffers`: False
762
+ - `dataloader_pin_memory`: True
763
+ - `dataloader_persistent_workers`: False
764
+ - `skip_memory_metrics`: True
765
+ - `use_legacy_prediction_loop`: False
766
+ - `push_to_hub`: False
767
+ - `resume_from_checkpoint`: None
768
+ - `hub_model_id`: None
769
+ - `hub_strategy`: every_save
770
+ - `hub_private_repo`: False
771
+ - `hub_always_push`: False
772
+ - `gradient_checkpointing`: False
773
+ - `gradient_checkpointing_kwargs`: None
774
+ - `include_inputs_for_metrics`: False
775
+ - `eval_do_concat_batches`: True
776
+ - `fp16_backend`: auto
777
+ - `push_to_hub_model_id`: None
778
+ - `push_to_hub_organization`: None
779
+ - `mp_parameters`:
780
+ - `auto_find_batch_size`: False
781
+ - `full_determinism`: False
782
+ - `torchdynamo`: None
783
+ - `ray_scope`: last
784
+ - `ddp_timeout`: 1800
785
+ - `torch_compile`: False
786
+ - `torch_compile_backend`: None
787
+ - `torch_compile_mode`: None
788
+ - `dispatch_batches`: None
789
+ - `split_batches`: None
790
+ - `include_tokens_per_second`: False
791
+ - `include_num_input_tokens_seen`: False
792
+ - `neftune_noise_alpha`: None
793
+ - `optim_target_modules`: None
794
+ - `batch_eval_metrics`: False
795
+ - `eval_on_start`: False
796
+ - `eval_use_gather_object`: False
797
+ - `batch_sampler`: no_duplicates
798
+ - `multi_dataset_batch_sampler`: proportional
799
+
800
+ </details>
801
+
802
+ ### Training Logs
803
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
804
+ |:---------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
805
+ | 0.3951 | 10 | 4.4042 | - | - | - | - | - | - |
806
+ | 0.7901 | 20 | 2.9471 | - | - | - | - | - | - |
807
+ | 0.9877 | 25 | - | 0.2293 | 0.2045 | 0.2099 | 0.2138 | 0.1717 | 0.2242 |
808
+ | 1.1852 | 30 | 2.2351 | - | - | - | - | - | - |
809
+ | 1.5802 | 40 | 1.5289 | - | - | - | - | - | - |
810
+ | 1.9753 | 50 | 1.2045 | 0.2332 | 0.2182 | 0.2277 | 0.2221 | 0.2051 | 0.2248 |
811
+ | 2.3704 | 60 | 0.9435 | - | - | - | - | - | - |
812
+ | 2.7654 | 70 | 0.7958 | - | - | - | - | - | - |
813
+ | **2.963** | **75** | **-** | **0.2379** | **0.2352** | **0.2276** | **0.2204** | **0.2138** | **0.2235** |
814
+ | 3.1605 | 80 | 0.6703 | - | - | - | - | - | - |
815
+ | 3.5556 | 90 | 0.6162 | - | - | - | - | - | - |
816
+ | 3.9506 | 100 | 0.6079 | - | - | - | - | - | - |
817
+ | 3.9901 | 101 | - | 0.2251 | 0.2307 | 0.2201 | 0.2343 | 0.2210 | 0.2348 |
818
+ | 4.3457 | 110 | 0.5085 | - | - | - | - | - | - |
819
+ | 4.7407 | 120 | 0.5248 | - | - | - | - | - | - |
820
+ | 4.9383 | 125 | - | 0.2287 | 0.2340 | 0.2304 | 0.2323 | 0.2256 | 0.2428 |
821
+
822
+ * The bold row denotes the saved checkpoint.
823
+
824
+ ### Framework Versions
825
+ - Python: 3.10.12
826
+ - Sentence Transformers: 3.1.1
827
+ - Transformers: 4.44.2
828
+ - PyTorch: 2.4.1+cu121
829
+ - Accelerate: 0.35.0.dev0
830
+ - Datasets: 3.0.1
831
+ - Tokenizers: 0.19.1
832
+
833
+ ## Citation
834
+
835
+ ### BibTeX
836
+
837
+ #### Sentence Transformers
838
+ ```bibtex
839
+ @inproceedings{reimers-2019-sentence-bert,
840
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
841
+ author = "Reimers, Nils and Gurevych, Iryna",
842
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
843
+ month = "11",
844
+ year = "2019",
845
+ publisher = "Association for Computational Linguistics",
846
+ url = "https://arxiv.org/abs/1908.10084",
847
+ }
848
+ ```
849
+
850
+ #### MatryoshkaLoss
851
+ ```bibtex
852
+ @misc{kusupati2024matryoshka,
853
+ title={Matryoshka Representation Learning},
854
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
855
+ year={2024},
856
+ eprint={2205.13147},
857
+ archivePrefix={arXiv},
858
+ primaryClass={cs.LG}
859
+ }
860
+ ```
861
+
862
+ #### MultipleNegativesRankingLoss
863
+ ```bibtex
864
+ @misc{henderson2017efficient,
865
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
866
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
867
+ year={2017},
868
+ eprint={1705.00652},
869
+ archivePrefix={arXiv},
870
+ primaryClass={cs.CL}
871
+ }
872
+ ```
873
+
874
+ <!--
875
+ ## Glossary
876
+
877
+ *Clearly define terms in order to be accessible across audiences.*
878
+ -->
879
+
880
+ <!--
881
+ ## Model Card Authors
882
+
883
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
884
+ -->
885
+
886
+ <!--
887
+ ## Model Card Contact
888
+
889
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
890
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35470e56af8e792a6a49f4e5c68ac7c672d25d39558dfcb6a5a63003ffa09f6b
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }