adriansanz commited on
Commit
3e94592
·
verified ·
1 Parent(s): 73e516f

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:5214
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Pel que fa als avals, la Junta de Govern Local en sessió celebrada
31
+ el 4 de juliol de 2006, va aprovar els models d'aval en funció del concepte a
32
+ garantir.
33
+ sentences:
34
+ - Quin és el benefici de la unitat de queixes i suggeriments per a la qualitat dels
35
+ serveis de l'Ajuntament de Sitges?
36
+ - Quin és el paper de la Junta de Govern Local?
37
+ - Quin és el propòsit més important del tràmit de canvi de titular de la llicència
38
+ de gual?
39
+ - source_sentence: Per a tenir dret a ésser inscrit en el Registre de Sol·licitants
40
+ d'Habitatge amb Protecció Oficial s'han de complir els procediments i els requisits
41
+ establerts per normativa.
42
+ sentences:
43
+ - Quin és el paper de la persona sol·licitant en la gestió de les fiances o dipòsits
44
+ d'una llicència d'obra?
45
+ - Quin és el benefici de complir els procediments i els requisits establerts per
46
+ normativa?
47
+ - Quin és el centre cultural que es troba a l'Escorxador de Sitges i ofereix activitats
48
+ culturals?
49
+ - source_sentence: Aquest tràmit permet comunicar a l'Ajuntament de Sitges la finalització
50
+ de les obres de nova construcció, o bé aquelles que hagin estat objecte de modificació
51
+ substancial o d’ampliació quan per a l’autorització de les obres s’hagi exigit
52
+ un projecte tècnic i a l’empara d’una llicència urbanística d’obra major.
53
+ sentences:
54
+ - Què passa si la modificació no té efectes sobre les persones o el medi ambient?
55
+ - Quin és el requisit principal per a la gestió diària d'una colònia felina?
56
+ - Quin és el paper del tràmit de comunicació prèvia de primera utilització i ocupació
57
+ d'edificis i instal·lacions en el procés d'obtenció de la llicència urbanística
58
+ d’obra major?
59
+ - source_sentence: Es tracta dels ajuts per a la realització de la Inspecció Tècnica
60
+ de l’Edifici (ITE) conjuntament amb l’elaboració dels certificats energètics.
61
+ sentences:
62
+ - Quins són els tipus de garanties que es poden ingressar?
63
+ - Quin és el procés d’elaboració dels certificats energètics?
64
+ - Quin és el paper de la consulta prèvia de classificació d'activitat en la tramitació
65
+ administrativa municipal?
66
+ - source_sentence: Les queixes, observacions i suggeriments són una eina important
67
+ per a millorar la qualitat dels serveis municipals.
68
+ sentences:
69
+ - Quin és el propòsit dels ajuts econòmics?
70
+ - Què és el que es busca amb les queixes, observacions i suggeriments?
71
+ - Qui són les persones beneficiàries de l'ajut per a la creació de noves empreses?
72
+ model-index:
73
+ - name: SentenceTransformer based on BAAI/bge-m3
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: dim 1024
80
+ type: dim_1024
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.14367088607594936
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.2818565400843882
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.3930379746835443
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.5664556962025317
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.14367088607594936
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.09395218002812938
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.07860759493670887
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.05664556962025316
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.14367088607594936
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.2818565400843882
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.3930379746835443
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.5664556962025317
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.32426778614918705
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.25066212912731944
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@100
125
+ value: 0.2694799737895368
126
+ name: Cosine Map@100
127
+ - task:
128
+ type: information-retrieval
129
+ name: Information Retrieval
130
+ dataset:
131
+ name: dim 768
132
+ type: dim_768
133
+ metrics:
134
+ - type: cosine_accuracy@1
135
+ value: 0.1470464135021097
136
+ name: Cosine Accuracy@1
137
+ - type: cosine_accuracy@3
138
+ value: 0.2871308016877637
139
+ name: Cosine Accuracy@3
140
+ - type: cosine_accuracy@5
141
+ value: 0.390084388185654
142
+ name: Cosine Accuracy@5
143
+ - type: cosine_accuracy@10
144
+ value: 0.5630801687763713
145
+ name: Cosine Accuracy@10
146
+ - type: cosine_precision@1
147
+ value: 0.1470464135021097
148
+ name: Cosine Precision@1
149
+ - type: cosine_precision@3
150
+ value: 0.09571026722925456
151
+ name: Cosine Precision@3
152
+ - type: cosine_precision@5
153
+ value: 0.07801687763713079
154
+ name: Cosine Precision@5
155
+ - type: cosine_precision@10
156
+ value: 0.056308016877637125
157
+ name: Cosine Precision@10
158
+ - type: cosine_recall@1
159
+ value: 0.1470464135021097
160
+ name: Cosine Recall@1
161
+ - type: cosine_recall@3
162
+ value: 0.2871308016877637
163
+ name: Cosine Recall@3
164
+ - type: cosine_recall@5
165
+ value: 0.390084388185654
166
+ name: Cosine Recall@5
167
+ - type: cosine_recall@10
168
+ value: 0.5630801687763713
169
+ name: Cosine Recall@10
170
+ - type: cosine_ndcg@10
171
+ value: 0.32549268557195893
172
+ name: Cosine Ndcg@10
173
+ - type: cosine_mrr@10
174
+ value: 0.25325421940928294
175
+ name: Cosine Mrr@10
176
+ - type: cosine_map@100
177
+ value: 0.272264774489146
178
+ name: Cosine Map@100
179
+ - task:
180
+ type: information-retrieval
181
+ name: Information Retrieval
182
+ dataset:
183
+ name: dim 512
184
+ type: dim_512
185
+ metrics:
186
+ - type: cosine_accuracy@1
187
+ value: 0.14177215189873418
188
+ name: Cosine Accuracy@1
189
+ - type: cosine_accuracy@3
190
+ value: 0.28375527426160335
191
+ name: Cosine Accuracy@3
192
+ - type: cosine_accuracy@5
193
+ value: 0.3890295358649789
194
+ name: Cosine Accuracy@5
195
+ - type: cosine_accuracy@10
196
+ value: 0.5620253164556962
197
+ name: Cosine Accuracy@10
198
+ - type: cosine_precision@1
199
+ value: 0.14177215189873418
200
+ name: Cosine Precision@1
201
+ - type: cosine_precision@3
202
+ value: 0.09458509142053445
203
+ name: Cosine Precision@3
204
+ - type: cosine_precision@5
205
+ value: 0.07780590717299578
206
+ name: Cosine Precision@5
207
+ - type: cosine_precision@10
208
+ value: 0.05620253164556962
209
+ name: Cosine Precision@10
210
+ - type: cosine_recall@1
211
+ value: 0.14177215189873418
212
+ name: Cosine Recall@1
213
+ - type: cosine_recall@3
214
+ value: 0.28375527426160335
215
+ name: Cosine Recall@3
216
+ - type: cosine_recall@5
217
+ value: 0.3890295358649789
218
+ name: Cosine Recall@5
219
+ - type: cosine_recall@10
220
+ value: 0.5620253164556962
221
+ name: Cosine Recall@10
222
+ - type: cosine_ndcg@10
223
+ value: 0.322564230377663
224
+ name: Cosine Ndcg@10
225
+ - type: cosine_mrr@10
226
+ value: 0.24968421405130298
227
+ name: Cosine Mrr@10
228
+ - type: cosine_map@100
229
+ value: 0.26885741426647297
230
+ name: Cosine Map@100
231
+ - task:
232
+ type: information-retrieval
233
+ name: Information Retrieval
234
+ dataset:
235
+ name: dim 256
236
+ type: dim_256
237
+ metrics:
238
+ - type: cosine_accuracy@1
239
+ value: 0.14345991561181434
240
+ name: Cosine Accuracy@1
241
+ - type: cosine_accuracy@3
242
+ value: 0.2831223628691983
243
+ name: Cosine Accuracy@3
244
+ - type: cosine_accuracy@5
245
+ value: 0.3850210970464135
246
+ name: Cosine Accuracy@5
247
+ - type: cosine_accuracy@10
248
+ value: 0.5550632911392405
249
+ name: Cosine Accuracy@10
250
+ - type: cosine_precision@1
251
+ value: 0.14345991561181434
252
+ name: Cosine Precision@1
253
+ - type: cosine_precision@3
254
+ value: 0.09437412095639944
255
+ name: Cosine Precision@3
256
+ - type: cosine_precision@5
257
+ value: 0.0770042194092827
258
+ name: Cosine Precision@5
259
+ - type: cosine_precision@10
260
+ value: 0.05550632911392406
261
+ name: Cosine Precision@10
262
+ - type: cosine_recall@1
263
+ value: 0.14345991561181434
264
+ name: Cosine Recall@1
265
+ - type: cosine_recall@3
266
+ value: 0.2831223628691983
267
+ name: Cosine Recall@3
268
+ - type: cosine_recall@5
269
+ value: 0.3850210970464135
270
+ name: Cosine Recall@5
271
+ - type: cosine_recall@10
272
+ value: 0.5550632911392405
273
+ name: Cosine Recall@10
274
+ - type: cosine_ndcg@10
275
+ value: 0.3205268083804564
276
+ name: Cosine Ndcg@10
277
+ - type: cosine_mrr@10
278
+ value: 0.24917821981113142
279
+ name: Cosine Mrr@10
280
+ - type: cosine_map@100
281
+ value: 0.2685327848764784
282
+ name: Cosine Map@100
283
+ - task:
284
+ type: information-retrieval
285
+ name: Information Retrieval
286
+ dataset:
287
+ name: dim 128
288
+ type: dim_128
289
+ metrics:
290
+ - type: cosine_accuracy@1
291
+ value: 0.13924050632911392
292
+ name: Cosine Accuracy@1
293
+ - type: cosine_accuracy@3
294
+ value: 0.2795358649789029
295
+ name: Cosine Accuracy@3
296
+ - type: cosine_accuracy@5
297
+ value: 0.3837552742616034
298
+ name: Cosine Accuracy@5
299
+ - type: cosine_accuracy@10
300
+ value: 0.5533755274261604
301
+ name: Cosine Accuracy@10
302
+ - type: cosine_precision@1
303
+ value: 0.13924050632911392
304
+ name: Cosine Precision@1
305
+ - type: cosine_precision@3
306
+ value: 0.09317862165963431
307
+ name: Cosine Precision@3
308
+ - type: cosine_precision@5
309
+ value: 0.07675105485232067
310
+ name: Cosine Precision@5
311
+ - type: cosine_precision@10
312
+ value: 0.05533755274261602
313
+ name: Cosine Precision@10
314
+ - type: cosine_recall@1
315
+ value: 0.13924050632911392
316
+ name: Cosine Recall@1
317
+ - type: cosine_recall@3
318
+ value: 0.2795358649789029
319
+ name: Cosine Recall@3
320
+ - type: cosine_recall@5
321
+ value: 0.3837552742616034
322
+ name: Cosine Recall@5
323
+ - type: cosine_recall@10
324
+ value: 0.5533755274261604
325
+ name: Cosine Recall@10
326
+ - type: cosine_ndcg@10
327
+ value: 0.31759054947613424
328
+ name: Cosine Ndcg@10
329
+ - type: cosine_mrr@10
330
+ value: 0.2457681166700155
331
+ name: Cosine Mrr@10
332
+ - type: cosine_map@100
333
+ value: 0.2649300065982546
334
+ name: Cosine Map@100
335
+ - task:
336
+ type: information-retrieval
337
+ name: Information Retrieval
338
+ dataset:
339
+ name: dim 64
340
+ type: dim_64
341
+ metrics:
342
+ - type: cosine_accuracy@1
343
+ value: 0.14029535864978904
344
+ name: Cosine Accuracy@1
345
+ - type: cosine_accuracy@3
346
+ value: 0.27531645569620256
347
+ name: Cosine Accuracy@3
348
+ - type: cosine_accuracy@5
349
+ value: 0.369831223628692
350
+ name: Cosine Accuracy@5
351
+ - type: cosine_accuracy@10
352
+ value: 0.5360759493670886
353
+ name: Cosine Accuracy@10
354
+ - type: cosine_precision@1
355
+ value: 0.14029535864978904
356
+ name: Cosine Precision@1
357
+ - type: cosine_precision@3
358
+ value: 0.09177215189873417
359
+ name: Cosine Precision@3
360
+ - type: cosine_precision@5
361
+ value: 0.0739662447257384
362
+ name: Cosine Precision@5
363
+ - type: cosine_precision@10
364
+ value: 0.053607594936708865
365
+ name: Cosine Precision@10
366
+ - type: cosine_recall@1
367
+ value: 0.14029535864978904
368
+ name: Cosine Recall@1
369
+ - type: cosine_recall@3
370
+ value: 0.27531645569620256
371
+ name: Cosine Recall@3
372
+ - type: cosine_recall@5
373
+ value: 0.369831223628692
374
+ name: Cosine Recall@5
375
+ - type: cosine_recall@10
376
+ value: 0.5360759493670886
377
+ name: Cosine Recall@10
378
+ - type: cosine_ndcg@10
379
+ value: 0.3099216271465372
380
+ name: Cosine Ndcg@10
381
+ - type: cosine_mrr@10
382
+ value: 0.24117783470631593
383
+ name: Cosine Mrr@10
384
+ - type: cosine_map@100
385
+ value: 0.2601649646918979
386
+ name: Cosine Map@100
387
+ ---
388
+
389
+ # SentenceTransformer based on BAAI/bge-m3
390
+
391
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
392
+
393
+ ## Model Details
394
+
395
+ ### Model Description
396
+ - **Model Type:** Sentence Transformer
397
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
398
+ - **Maximum Sequence Length:** 8192 tokens
399
+ - **Output Dimensionality:** 1024 tokens
400
+ - **Similarity Function:** Cosine Similarity
401
+ - **Training Dataset:**
402
+ - json
403
+ <!-- - **Language:** Unknown -->
404
+ <!-- - **License:** Unknown -->
405
+
406
+ ### Model Sources
407
+
408
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
409
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
410
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
411
+
412
+ ### Full Model Architecture
413
+
414
+ ```
415
+ SentenceTransformer(
416
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
417
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
418
+ (2): Normalize()
419
+ )
420
+ ```
421
+
422
+ ## Usage
423
+
424
+ ### Direct Usage (Sentence Transformers)
425
+
426
+ First install the Sentence Transformers library:
427
+
428
+ ```bash
429
+ pip install -U sentence-transformers
430
+ ```
431
+
432
+ Then you can load this model and run inference.
433
+ ```python
434
+ from sentence_transformers import SentenceTransformer
435
+
436
+ # Download from the 🤗 Hub
437
+ model = SentenceTransformer("adriansanz/ST-tramits-sitges-005-5ep")
438
+ # Run inference
439
+ sentences = [
440
+ 'Les queixes, observacions i suggeriments són una eina important per a millorar la qualitat dels serveis municipals.',
441
+ 'Què és el que es busca amb les queixes, observacions i suggeriments?',
442
+ 'Quin és el propòsit dels ajuts econòmics?',
443
+ ]
444
+ embeddings = model.encode(sentences)
445
+ print(embeddings.shape)
446
+ # [3, 1024]
447
+
448
+ # Get the similarity scores for the embeddings
449
+ similarities = model.similarity(embeddings, embeddings)
450
+ print(similarities.shape)
451
+ # [3, 3]
452
+ ```
453
+
454
+ <!--
455
+ ### Direct Usage (Transformers)
456
+
457
+ <details><summary>Click to see the direct usage in Transformers</summary>
458
+
459
+ </details>
460
+ -->
461
+
462
+ <!--
463
+ ### Downstream Usage (Sentence Transformers)
464
+
465
+ You can finetune this model on your own dataset.
466
+
467
+ <details><summary>Click to expand</summary>
468
+
469
+ </details>
470
+ -->
471
+
472
+ <!--
473
+ ### Out-of-Scope Use
474
+
475
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
476
+ -->
477
+
478
+ ## Evaluation
479
+
480
+ ### Metrics
481
+
482
+ #### Information Retrieval
483
+ * Dataset: `dim_1024`
484
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
485
+
486
+ | Metric | Value |
487
+ |:--------------------|:-----------|
488
+ | cosine_accuracy@1 | 0.1437 |
489
+ | cosine_accuracy@3 | 0.2819 |
490
+ | cosine_accuracy@5 | 0.393 |
491
+ | cosine_accuracy@10 | 0.5665 |
492
+ | cosine_precision@1 | 0.1437 |
493
+ | cosine_precision@3 | 0.094 |
494
+ | cosine_precision@5 | 0.0786 |
495
+ | cosine_precision@10 | 0.0566 |
496
+ | cosine_recall@1 | 0.1437 |
497
+ | cosine_recall@3 | 0.2819 |
498
+ | cosine_recall@5 | 0.393 |
499
+ | cosine_recall@10 | 0.5665 |
500
+ | cosine_ndcg@10 | 0.3243 |
501
+ | cosine_mrr@10 | 0.2507 |
502
+ | **cosine_map@100** | **0.2695** |
503
+
504
+ #### Information Retrieval
505
+ * Dataset: `dim_768`
506
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
507
+
508
+ | Metric | Value |
509
+ |:--------------------|:-----------|
510
+ | cosine_accuracy@1 | 0.147 |
511
+ | cosine_accuracy@3 | 0.2871 |
512
+ | cosine_accuracy@5 | 0.3901 |
513
+ | cosine_accuracy@10 | 0.5631 |
514
+ | cosine_precision@1 | 0.147 |
515
+ | cosine_precision@3 | 0.0957 |
516
+ | cosine_precision@5 | 0.078 |
517
+ | cosine_precision@10 | 0.0563 |
518
+ | cosine_recall@1 | 0.147 |
519
+ | cosine_recall@3 | 0.2871 |
520
+ | cosine_recall@5 | 0.3901 |
521
+ | cosine_recall@10 | 0.5631 |
522
+ | cosine_ndcg@10 | 0.3255 |
523
+ | cosine_mrr@10 | 0.2533 |
524
+ | **cosine_map@100** | **0.2723** |
525
+
526
+ #### Information Retrieval
527
+ * Dataset: `dim_512`
528
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
529
+
530
+ | Metric | Value |
531
+ |:--------------------|:-----------|
532
+ | cosine_accuracy@1 | 0.1418 |
533
+ | cosine_accuracy@3 | 0.2838 |
534
+ | cosine_accuracy@5 | 0.389 |
535
+ | cosine_accuracy@10 | 0.562 |
536
+ | cosine_precision@1 | 0.1418 |
537
+ | cosine_precision@3 | 0.0946 |
538
+ | cosine_precision@5 | 0.0778 |
539
+ | cosine_precision@10 | 0.0562 |
540
+ | cosine_recall@1 | 0.1418 |
541
+ | cosine_recall@3 | 0.2838 |
542
+ | cosine_recall@5 | 0.389 |
543
+ | cosine_recall@10 | 0.562 |
544
+ | cosine_ndcg@10 | 0.3226 |
545
+ | cosine_mrr@10 | 0.2497 |
546
+ | **cosine_map@100** | **0.2689** |
547
+
548
+ #### Information Retrieval
549
+ * Dataset: `dim_256`
550
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
551
+
552
+ | Metric | Value |
553
+ |:--------------------|:-----------|
554
+ | cosine_accuracy@1 | 0.1435 |
555
+ | cosine_accuracy@3 | 0.2831 |
556
+ | cosine_accuracy@5 | 0.385 |
557
+ | cosine_accuracy@10 | 0.5551 |
558
+ | cosine_precision@1 | 0.1435 |
559
+ | cosine_precision@3 | 0.0944 |
560
+ | cosine_precision@5 | 0.077 |
561
+ | cosine_precision@10 | 0.0555 |
562
+ | cosine_recall@1 | 0.1435 |
563
+ | cosine_recall@3 | 0.2831 |
564
+ | cosine_recall@5 | 0.385 |
565
+ | cosine_recall@10 | 0.5551 |
566
+ | cosine_ndcg@10 | 0.3205 |
567
+ | cosine_mrr@10 | 0.2492 |
568
+ | **cosine_map@100** | **0.2685** |
569
+
570
+ #### Information Retrieval
571
+ * Dataset: `dim_128`
572
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
573
+
574
+ | Metric | Value |
575
+ |:--------------------|:-----------|
576
+ | cosine_accuracy@1 | 0.1392 |
577
+ | cosine_accuracy@3 | 0.2795 |
578
+ | cosine_accuracy@5 | 0.3838 |
579
+ | cosine_accuracy@10 | 0.5534 |
580
+ | cosine_precision@1 | 0.1392 |
581
+ | cosine_precision@3 | 0.0932 |
582
+ | cosine_precision@5 | 0.0768 |
583
+ | cosine_precision@10 | 0.0553 |
584
+ | cosine_recall@1 | 0.1392 |
585
+ | cosine_recall@3 | 0.2795 |
586
+ | cosine_recall@5 | 0.3838 |
587
+ | cosine_recall@10 | 0.5534 |
588
+ | cosine_ndcg@10 | 0.3176 |
589
+ | cosine_mrr@10 | 0.2458 |
590
+ | **cosine_map@100** | **0.2649** |
591
+
592
+ #### Information Retrieval
593
+ * Dataset: `dim_64`
594
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
595
+
596
+ | Metric | Value |
597
+ |:--------------------|:-----------|
598
+ | cosine_accuracy@1 | 0.1403 |
599
+ | cosine_accuracy@3 | 0.2753 |
600
+ | cosine_accuracy@5 | 0.3698 |
601
+ | cosine_accuracy@10 | 0.5361 |
602
+ | cosine_precision@1 | 0.1403 |
603
+ | cosine_precision@3 | 0.0918 |
604
+ | cosine_precision@5 | 0.074 |
605
+ | cosine_precision@10 | 0.0536 |
606
+ | cosine_recall@1 | 0.1403 |
607
+ | cosine_recall@3 | 0.2753 |
608
+ | cosine_recall@5 | 0.3698 |
609
+ | cosine_recall@10 | 0.5361 |
610
+ | cosine_ndcg@10 | 0.3099 |
611
+ | cosine_mrr@10 | 0.2412 |
612
+ | **cosine_map@100** | **0.2602** |
613
+
614
+ <!--
615
+ ## Bias, Risks and Limitations
616
+
617
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
618
+ -->
619
+
620
+ <!--
621
+ ### Recommendations
622
+
623
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
624
+ -->
625
+
626
+ ## Training Details
627
+
628
+ ### Training Dataset
629
+
630
+ #### json
631
+
632
+ * Dataset: json
633
+ * Size: 5,214 training samples
634
+ * Columns: <code>positive</code> and <code>anchor</code>
635
+ * Approximate statistics based on the first 1000 samples:
636
+ | | positive | anchor |
637
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
638
+ | type | string | string |
639
+ | details | <ul><li>min: 3 tokens</li><li>mean: 49.66 tokens</li><li>max: 149 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.85 tokens</li><li>max: 48 tokens</li></ul> |
640
+ * Samples:
641
+ | positive | anchor |
642
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
643
+ | <code>Ajuts per la reactivació de petites empreses i persones autònomes donades d’alta al règim especial de treballadors autònoms (RETA) amb una antiguitat superior als cinc anys (COVID19)</code> | <code>Quin és el requisit per a les petites empreses per rebre ajuts?</code> |
644
+ | <code>En cas de no poder desenvolupar el projecte o activitat per la qual s'ha sol·licitat la subvenció, l'entitat beneficiària pot renunciar a la subvenció.</code> | <code>Puc renunciar a una subvenció si ja l'he rebut?</code> |
645
+ | <code>L’Espai Jove de Sitges és l'equipament municipal on els joves poden dur a terme iniciatives pròpies i on també es desenvolupen d’altres impulsades per la regidoria de Joventut.</code> | <code>Quin és el paper de la regidoria de Joventut a l'Espai Jove de Sitges?</code> |
646
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
647
+ ```json
648
+ {
649
+ "loss": "MultipleNegativesRankingLoss",
650
+ "matryoshka_dims": [
651
+ 1024,
652
+ 768,
653
+ 512,
654
+ 256,
655
+ 128,
656
+ 64
657
+ ],
658
+ "matryoshka_weights": [
659
+ 1,
660
+ 1,
661
+ 1,
662
+ 1,
663
+ 1,
664
+ 1
665
+ ],
666
+ "n_dims_per_step": -1
667
+ }
668
+ ```
669
+
670
+ ### Training Hyperparameters
671
+ #### Non-Default Hyperparameters
672
+
673
+ - `eval_strategy`: epoch
674
+ - `per_device_train_batch_size`: 16
675
+ - `per_device_eval_batch_size`: 16
676
+ - `gradient_accumulation_steps`: 16
677
+ - `learning_rate`: 2e-05
678
+ - `num_train_epochs`: 5
679
+ - `lr_scheduler_type`: cosine
680
+ - `warmup_ratio`: 0.2
681
+ - `bf16`: True
682
+ - `tf32`: True
683
+ - `load_best_model_at_end`: True
684
+ - `optim`: adamw_torch_fused
685
+ - `batch_sampler`: no_duplicates
686
+
687
+ #### All Hyperparameters
688
+ <details><summary>Click to expand</summary>
689
+
690
+ - `overwrite_output_dir`: False
691
+ - `do_predict`: False
692
+ - `eval_strategy`: epoch
693
+ - `prediction_loss_only`: True
694
+ - `per_device_train_batch_size`: 16
695
+ - `per_device_eval_batch_size`: 16
696
+ - `per_gpu_train_batch_size`: None
697
+ - `per_gpu_eval_batch_size`: None
698
+ - `gradient_accumulation_steps`: 16
699
+ - `eval_accumulation_steps`: None
700
+ - `torch_empty_cache_steps`: None
701
+ - `learning_rate`: 2e-05
702
+ - `weight_decay`: 0.0
703
+ - `adam_beta1`: 0.9
704
+ - `adam_beta2`: 0.999
705
+ - `adam_epsilon`: 1e-08
706
+ - `max_grad_norm`: 1.0
707
+ - `num_train_epochs`: 5
708
+ - `max_steps`: -1
709
+ - `lr_scheduler_type`: cosine
710
+ - `lr_scheduler_kwargs`: {}
711
+ - `warmup_ratio`: 0.2
712
+ - `warmup_steps`: 0
713
+ - `log_level`: passive
714
+ - `log_level_replica`: warning
715
+ - `log_on_each_node`: True
716
+ - `logging_nan_inf_filter`: True
717
+ - `save_safetensors`: True
718
+ - `save_on_each_node`: False
719
+ - `save_only_model`: False
720
+ - `restore_callback_states_from_checkpoint`: False
721
+ - `no_cuda`: False
722
+ - `use_cpu`: False
723
+ - `use_mps_device`: False
724
+ - `seed`: 42
725
+ - `data_seed`: None
726
+ - `jit_mode_eval`: False
727
+ - `use_ipex`: False
728
+ - `bf16`: True
729
+ - `fp16`: False
730
+ - `fp16_opt_level`: O1
731
+ - `half_precision_backend`: auto
732
+ - `bf16_full_eval`: False
733
+ - `fp16_full_eval`: False
734
+ - `tf32`: True
735
+ - `local_rank`: 0
736
+ - `ddp_backend`: None
737
+ - `tpu_num_cores`: None
738
+ - `tpu_metrics_debug`: False
739
+ - `debug`: []
740
+ - `dataloader_drop_last`: False
741
+ - `dataloader_num_workers`: 0
742
+ - `dataloader_prefetch_factor`: None
743
+ - `past_index`: -1
744
+ - `disable_tqdm`: False
745
+ - `remove_unused_columns`: True
746
+ - `label_names`: None
747
+ - `load_best_model_at_end`: True
748
+ - `ignore_data_skip`: False
749
+ - `fsdp`: []
750
+ - `fsdp_min_num_params`: 0
751
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
752
+ - `fsdp_transformer_layer_cls_to_wrap`: None
753
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
754
+ - `deepspeed`: None
755
+ - `label_smoothing_factor`: 0.0
756
+ - `optim`: adamw_torch_fused
757
+ - `optim_args`: None
758
+ - `adafactor`: False
759
+ - `group_by_length`: False
760
+ - `length_column_name`: length
761
+ - `ddp_find_unused_parameters`: None
762
+ - `ddp_bucket_cap_mb`: None
763
+ - `ddp_broadcast_buffers`: False
764
+ - `dataloader_pin_memory`: True
765
+ - `dataloader_persistent_workers`: False
766
+ - `skip_memory_metrics`: True
767
+ - `use_legacy_prediction_loop`: False
768
+ - `push_to_hub`: False
769
+ - `resume_from_checkpoint`: None
770
+ - `hub_model_id`: None
771
+ - `hub_strategy`: every_save
772
+ - `hub_private_repo`: False
773
+ - `hub_always_push`: False
774
+ - `gradient_checkpointing`: False
775
+ - `gradient_checkpointing_kwargs`: None
776
+ - `include_inputs_for_metrics`: False
777
+ - `eval_do_concat_batches`: True
778
+ - `fp16_backend`: auto
779
+ - `push_to_hub_model_id`: None
780
+ - `push_to_hub_organization`: None
781
+ - `mp_parameters`:
782
+ - `auto_find_batch_size`: False
783
+ - `full_determinism`: False
784
+ - `torchdynamo`: None
785
+ - `ray_scope`: last
786
+ - `ddp_timeout`: 1800
787
+ - `torch_compile`: False
788
+ - `torch_compile_backend`: None
789
+ - `torch_compile_mode`: None
790
+ - `dispatch_batches`: None
791
+ - `split_batches`: None
792
+ - `include_tokens_per_second`: False
793
+ - `include_num_input_tokens_seen`: False
794
+ - `neftune_noise_alpha`: None
795
+ - `optim_target_modules`: None
796
+ - `batch_eval_metrics`: False
797
+ - `eval_on_start`: False
798
+ - `eval_use_gather_object`: False
799
+ - `batch_sampler`: no_duplicates
800
+ - `multi_dataset_batch_sampler`: proportional
801
+
802
+ </details>
803
+
804
+ ### Training Logs
805
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
806
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
807
+ | 0.4908 | 10 | 3.3699 | - | - | - | - | - | - |
808
+ | 0.9816 | 20 | 1.8761 | 0.2565 | 0.2430 | 0.2509 | 0.2499 | 0.2301 | 0.2567 |
809
+ | 1.4724 | 30 | 1.3111 | - | - | - | - | - | - |
810
+ | 1.9632 | 40 | 0.8122 | 0.2636 | 0.2578 | 0.2629 | 0.2639 | 0.2486 | 0.2654 |
811
+ | 2.4540 | 50 | 0.5903 | - | - | - | - | - | - |
812
+ | 2.9448 | 60 | 0.4306 | - | - | - | - | - | - |
813
+ | **2.9939** | **61** | **-** | **0.2661** | **0.2636** | **0.2648** | **0.2659** | **0.2544** | **0.2694** |
814
+ | 3.4356 | 70 | 0.3553 | - | - | - | - | - | - |
815
+ | 3.9264 | 80 | 0.2925 | - | - | - | - | - | - |
816
+ | 3.9755 | 81 | - | 0.2701 | 0.2621 | 0.2663 | 0.2706 | 0.2602 | 0.2709 |
817
+ | 4.4172 | 90 | 0.2797 | - | - | - | - | - | - |
818
+ | 4.9080 | 100 | 0.267 | 0.2695 | 0.2649 | 0.2685 | 0.2689 | 0.2602 | 0.2723 |
819
+
820
+ * The bold row denotes the saved checkpoint.
821
+
822
+ ### Framework Versions
823
+ - Python: 3.10.12
824
+ - Sentence Transformers: 3.1.1
825
+ - Transformers: 4.44.2
826
+ - PyTorch: 2.4.1+cu121
827
+ - Accelerate: 0.35.0.dev0
828
+ - Datasets: 3.0.1
829
+ - Tokenizers: 0.19.1
830
+
831
+ ## Citation
832
+
833
+ ### BibTeX
834
+
835
+ #### Sentence Transformers
836
+ ```bibtex
837
+ @inproceedings{reimers-2019-sentence-bert,
838
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
839
+ author = "Reimers, Nils and Gurevych, Iryna",
840
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
841
+ month = "11",
842
+ year = "2019",
843
+ publisher = "Association for Computational Linguistics",
844
+ url = "https://arxiv.org/abs/1908.10084",
845
+ }
846
+ ```
847
+
848
+ #### MatryoshkaLoss
849
+ ```bibtex
850
+ @misc{kusupati2024matryoshka,
851
+ title={Matryoshka Representation Learning},
852
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
853
+ year={2024},
854
+ eprint={2205.13147},
855
+ archivePrefix={arXiv},
856
+ primaryClass={cs.LG}
857
+ }
858
+ ```
859
+
860
+ #### MultipleNegativesRankingLoss
861
+ ```bibtex
862
+ @misc{henderson2017efficient,
863
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
864
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
865
+ year={2017},
866
+ eprint={1705.00652},
867
+ archivePrefix={arXiv},
868
+ primaryClass={cs.CL}
869
+ }
870
+ ```
871
+
872
+ <!--
873
+ ## Glossary
874
+
875
+ *Clearly define terms in order to be accessible across audiences.*
876
+ -->
877
+
878
+ <!--
879
+ ## Model Card Authors
880
+
881
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
882
+ -->
883
+
884
+ <!--
885
+ ## Model Card Contact
886
+
887
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
888
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94d1e7e7eaf7024d3a9c9a1530d38516661be1efb80dc6c6ed159fc5e57c1625
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }