adriansanz commited on
Commit
62789bc
·
verified ·
1 Parent(s): a7f30d9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,881 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:2844
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: La unió d’aquests dos documents conforma l’Informe d’Avaluació
31
+ de l’Edifici (IAE).
32
+ sentences:
33
+ - Quin és el requisit per a rebre els ajuts econòmics per a les empreses?
34
+ - Quin és el resultat de la unió de la Inspecció Tècnica de l’Edifici (ITE) i dels
35
+ certificats energètics?
36
+ - Quin és el termini per sol·licitar la renovació del carnet de persona cuidadora?
37
+ - source_sentence: La Inspecció Tècnica dels Edificis (ITE) permet identificar les
38
+ oportunitats de millora de l'eficiència energètica i implementar mesures de rehabilitació.
39
+ sentences:
40
+ - Quin és el benefici de l'activitat del Viver dels Avis de Sitges per a la qualitat
41
+ de vida?
42
+ - Com puc saber si puc ser cuidador?
43
+ - Quin és el paper de la Inspecció Tècnica dels Edificis (ITE) en la millora de
44
+ l'eficiència energètica?
45
+ - source_sentence: A les zones blaves els parquímetres i serveis de pagament reconeixen
46
+ les matricules dels vehicles acreditats.
47
+ sentences:
48
+ - Quin és el paper de la mediació en una denúncia?
49
+ - Quin és el paper de les persones físiques?
50
+ - Quin és el procediment per estacionar a les zones blaves amb l'acreditació de
51
+ resident?
52
+ - source_sentence: Els establiments oberts al públic destinats a espectacles cinematogràfics.
53
+ Els establiments oberts al públic destinats a espectacles públics i activitats
54
+ recreatives musicals amb un aforament autoritzat fins a 150 persones.
55
+ sentences:
56
+ - Quin és el resultat esperat després de la intervenció de l'Ajuntament en les denúncies
57
+ sanitàries?
58
+ - Quin és el requisit de superfície construïda per als restaurants musicals?
59
+ - Quins establiments oberts al públic han de comunicar la seva obertura a l'Ajuntament?
60
+ - source_sentence: El Decret 97/2002, de 5 de març, regula la concessió de la targeta
61
+ d’aparcament per a persones amb disminució i altres mesures adreçades a facilitar
62
+ el desplaçament de les persones amb mobilitat reduïda.
63
+ sentences:
64
+ - Quin és el benefici de la targeta d'aparcament per a les persones amb disminució?
65
+ - Quin és el paper de la Junta de Govern Local?
66
+ - Quin és l'organisme que emet el certificat de serveis prestats?
67
+ model-index:
68
+ - name: SentenceTransformer based on BAAI/bge-m3
69
+ results:
70
+ - task:
71
+ type: information-retrieval
72
+ name: Information Retrieval
73
+ dataset:
74
+ name: dim 1024
75
+ type: dim_1024
76
+ metrics:
77
+ - type: cosine_accuracy@1
78
+ value: 0.11814345991561181
79
+ name: Cosine Accuracy@1
80
+ - type: cosine_accuracy@3
81
+ value: 0.23277074542897327
82
+ name: Cosine Accuracy@3
83
+ - type: cosine_accuracy@5
84
+ value: 0.3129395218002813
85
+ name: Cosine Accuracy@5
86
+ - type: cosine_accuracy@10
87
+ value: 0.4644163150492264
88
+ name: Cosine Accuracy@10
89
+ - type: cosine_precision@1
90
+ value: 0.11814345991561181
91
+ name: Cosine Precision@1
92
+ - type: cosine_precision@3
93
+ value: 0.07759024847632442
94
+ name: Cosine Precision@3
95
+ - type: cosine_precision@5
96
+ value: 0.06258790436005626
97
+ name: Cosine Precision@5
98
+ - type: cosine_precision@10
99
+ value: 0.046441631504922636
100
+ name: Cosine Precision@10
101
+ - type: cosine_recall@1
102
+ value: 0.11814345991561181
103
+ name: Cosine Recall@1
104
+ - type: cosine_recall@3
105
+ value: 0.23277074542897327
106
+ name: Cosine Recall@3
107
+ - type: cosine_recall@5
108
+ value: 0.3129395218002813
109
+ name: Cosine Recall@5
110
+ - type: cosine_recall@10
111
+ value: 0.4644163150492264
112
+ name: Cosine Recall@10
113
+ - type: cosine_ndcg@10
114
+ value: 0.26553370933458276
115
+ name: Cosine Ndcg@10
116
+ - type: cosine_mrr@10
117
+ value: 0.20527392672962277
118
+ name: Cosine Mrr@10
119
+ - type: cosine_map@100
120
+ value: 0.22599508422976106
121
+ name: Cosine Map@100
122
+ - task:
123
+ type: information-retrieval
124
+ name: Information Retrieval
125
+ dataset:
126
+ name: dim 768
127
+ type: dim_768
128
+ metrics:
129
+ - type: cosine_accuracy@1
130
+ value: 0.11575246132208157
131
+ name: Cosine Accuracy@1
132
+ - type: cosine_accuracy@3
133
+ value: 0.2289732770745429
134
+ name: Cosine Accuracy@3
135
+ - type: cosine_accuracy@5
136
+ value: 0.3112517580872011
137
+ name: Cosine Accuracy@5
138
+ - type: cosine_accuracy@10
139
+ value: 0.46568213783403656
140
+ name: Cosine Accuracy@10
141
+ - type: cosine_precision@1
142
+ value: 0.11575246132208157
143
+ name: Cosine Precision@1
144
+ - type: cosine_precision@3
145
+ value: 0.07632442569151429
146
+ name: Cosine Precision@3
147
+ - type: cosine_precision@5
148
+ value: 0.062250351617440226
149
+ name: Cosine Precision@5
150
+ - type: cosine_precision@10
151
+ value: 0.04656821378340366
152
+ name: Cosine Precision@10
153
+ - type: cosine_recall@1
154
+ value: 0.11575246132208157
155
+ name: Cosine Recall@1
156
+ - type: cosine_recall@3
157
+ value: 0.2289732770745429
158
+ name: Cosine Recall@3
159
+ - type: cosine_recall@5
160
+ value: 0.3112517580872011
161
+ name: Cosine Recall@5
162
+ - type: cosine_recall@10
163
+ value: 0.46568213783403656
164
+ name: Cosine Recall@10
165
+ - type: cosine_ndcg@10
166
+ value: 0.26414039995115557
167
+ name: Cosine Ndcg@10
168
+ - type: cosine_mrr@10
169
+ value: 0.20311873507021158
170
+ name: Cosine Mrr@10
171
+ - type: cosine_map@100
172
+ value: 0.22355973027797246
173
+ name: Cosine Map@100
174
+ - task:
175
+ type: information-retrieval
176
+ name: Information Retrieval
177
+ dataset:
178
+ name: dim 512
179
+ type: dim_512
180
+ metrics:
181
+ - type: cosine_accuracy@1
182
+ value: 0.11912798874824192
183
+ name: Cosine Accuracy@1
184
+ - type: cosine_accuracy@3
185
+ value: 0.23277074542897327
186
+ name: Cosine Accuracy@3
187
+ - type: cosine_accuracy@5
188
+ value: 0.31758087201125174
189
+ name: Cosine Accuracy@5
190
+ - type: cosine_accuracy@10
191
+ value: 0.46582278481012657
192
+ name: Cosine Accuracy@10
193
+ - type: cosine_precision@1
194
+ value: 0.11912798874824192
195
+ name: Cosine Precision@1
196
+ - type: cosine_precision@3
197
+ value: 0.07759024847632444
198
+ name: Cosine Precision@3
199
+ - type: cosine_precision@5
200
+ value: 0.06351617440225035
201
+ name: Cosine Precision@5
202
+ - type: cosine_precision@10
203
+ value: 0.04658227848101265
204
+ name: Cosine Precision@10
205
+ - type: cosine_recall@1
206
+ value: 0.11912798874824192
207
+ name: Cosine Recall@1
208
+ - type: cosine_recall@3
209
+ value: 0.23277074542897327
210
+ name: Cosine Recall@3
211
+ - type: cosine_recall@5
212
+ value: 0.31758087201125174
213
+ name: Cosine Recall@5
214
+ - type: cosine_recall@10
215
+ value: 0.46582278481012657
216
+ name: Cosine Recall@10
217
+ - type: cosine_ndcg@10
218
+ value: 0.26671990925029193
219
+ name: Cosine Ndcg@10
220
+ - type: cosine_mrr@10
221
+ value: 0.20635646194717913
222
+ name: Cosine Mrr@10
223
+ - type: cosine_map@100
224
+ value: 0.22673055490318922
225
+ name: Cosine Map@100
226
+ - task:
227
+ type: information-retrieval
228
+ name: Information Retrieval
229
+ dataset:
230
+ name: dim 256
231
+ type: dim_256
232
+ metrics:
233
+ - type: cosine_accuracy@1
234
+ value: 0.11533052039381153
235
+ name: Cosine Accuracy@1
236
+ - type: cosine_accuracy@3
237
+ value: 0.22658227848101264
238
+ name: Cosine Accuracy@3
239
+ - type: cosine_accuracy@5
240
+ value: 0.30857946554149085
241
+ name: Cosine Accuracy@5
242
+ - type: cosine_accuracy@10
243
+ value: 0.45668073136427567
244
+ name: Cosine Accuracy@10
245
+ - type: cosine_precision@1
246
+ value: 0.11533052039381153
247
+ name: Cosine Precision@1
248
+ - type: cosine_precision@3
249
+ value: 0.07552742616033756
250
+ name: Cosine Precision@3
251
+ - type: cosine_precision@5
252
+ value: 0.06171589310829817
253
+ name: Cosine Precision@5
254
+ - type: cosine_precision@10
255
+ value: 0.04566807313642757
256
+ name: Cosine Precision@10
257
+ - type: cosine_recall@1
258
+ value: 0.11533052039381153
259
+ name: Cosine Recall@1
260
+ - type: cosine_recall@3
261
+ value: 0.22658227848101264
262
+ name: Cosine Recall@3
263
+ - type: cosine_recall@5
264
+ value: 0.30857946554149085
265
+ name: Cosine Recall@5
266
+ - type: cosine_recall@10
267
+ value: 0.45668073136427567
268
+ name: Cosine Recall@10
269
+ - type: cosine_ndcg@10
270
+ value: 0.26044811042246035
271
+ name: Cosine Ndcg@10
272
+ - type: cosine_mrr@10
273
+ value: 0.20098218471636187
274
+ name: Cosine Mrr@10
275
+ - type: cosine_map@100
276
+ value: 0.22169039893772347
277
+ name: Cosine Map@100
278
+ - task:
279
+ type: information-retrieval
280
+ name: Information Retrieval
281
+ dataset:
282
+ name: dim 128
283
+ type: dim_128
284
+ metrics:
285
+ - type: cosine_accuracy@1
286
+ value: 0.11181434599156118
287
+ name: Cosine Accuracy@1
288
+ - type: cosine_accuracy@3
289
+ value: 0.22334739803094233
290
+ name: Cosine Accuracy@3
291
+ - type: cosine_accuracy@5
292
+ value: 0.30253164556962026
293
+ name: Cosine Accuracy@5
294
+ - type: cosine_accuracy@10
295
+ value: 0.45288326300984527
296
+ name: Cosine Accuracy@10
297
+ - type: cosine_precision@1
298
+ value: 0.11181434599156118
299
+ name: Cosine Precision@1
300
+ - type: cosine_precision@3
301
+ value: 0.07444913267698076
302
+ name: Cosine Precision@3
303
+ - type: cosine_precision@5
304
+ value: 0.06050632911392405
305
+ name: Cosine Precision@5
306
+ - type: cosine_precision@10
307
+ value: 0.045288326300984526
308
+ name: Cosine Precision@10
309
+ - type: cosine_recall@1
310
+ value: 0.11181434599156118
311
+ name: Cosine Recall@1
312
+ - type: cosine_recall@3
313
+ value: 0.22334739803094233
314
+ name: Cosine Recall@3
315
+ - type: cosine_recall@5
316
+ value: 0.30253164556962026
317
+ name: Cosine Recall@5
318
+ - type: cosine_recall@10
319
+ value: 0.45288326300984527
320
+ name: Cosine Recall@10
321
+ - type: cosine_ndcg@10
322
+ value: 0.2566428043422134
323
+ name: Cosine Ndcg@10
324
+ - type: cosine_mrr@10
325
+ value: 0.19724806331346384
326
+ name: Cosine Mrr@10
327
+ - type: cosine_map@100
328
+ value: 0.21784479785600805
329
+ name: Cosine Map@100
330
+ - task:
331
+ type: information-retrieval
332
+ name: Information Retrieval
333
+ dataset:
334
+ name: dim 64
335
+ type: dim_64
336
+ metrics:
337
+ - type: cosine_accuracy@1
338
+ value: 0.10689170182841069
339
+ name: Cosine Accuracy@1
340
+ - type: cosine_accuracy@3
341
+ value: 0.21251758087201125
342
+ name: Cosine Accuracy@3
343
+ - type: cosine_accuracy@5
344
+ value: 0.28846694796061884
345
+ name: Cosine Accuracy@5
346
+ - type: cosine_accuracy@10
347
+ value: 0.42967651195499296
348
+ name: Cosine Accuracy@10
349
+ - type: cosine_precision@1
350
+ value: 0.10689170182841069
351
+ name: Cosine Precision@1
352
+ - type: cosine_precision@3
353
+ value: 0.07083919362400375
354
+ name: Cosine Precision@3
355
+ - type: cosine_precision@5
356
+ value: 0.05769338959212378
357
+ name: Cosine Precision@5
358
+ - type: cosine_precision@10
359
+ value: 0.0429676511954993
360
+ name: Cosine Precision@10
361
+ - type: cosine_recall@1
362
+ value: 0.10689170182841069
363
+ name: Cosine Recall@1
364
+ - type: cosine_recall@3
365
+ value: 0.21251758087201125
366
+ name: Cosine Recall@3
367
+ - type: cosine_recall@5
368
+ value: 0.28846694796061884
369
+ name: Cosine Recall@5
370
+ - type: cosine_recall@10
371
+ value: 0.42967651195499296
372
+ name: Cosine Recall@10
373
+ - type: cosine_ndcg@10
374
+ value: 0.2438421466584992
375
+ name: Cosine Ndcg@10
376
+ - type: cosine_mrr@10
377
+ value: 0.1875642957604982
378
+ name: Cosine Mrr@10
379
+ - type: cosine_map@100
380
+ value: 0.2080904354707231
381
+ name: Cosine Map@100
382
+ ---
383
+
384
+ # SentenceTransformer based on BAAI/bge-m3
385
+
386
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
387
+
388
+ ## Model Details
389
+
390
+ ### Model Description
391
+ - **Model Type:** Sentence Transformer
392
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
393
+ - **Maximum Sequence Length:** 8192 tokens
394
+ - **Output Dimensionality:** 1024 tokens
395
+ - **Similarity Function:** Cosine Similarity
396
+ - **Training Dataset:**
397
+ - json
398
+ <!-- - **Language:** Unknown -->
399
+ <!-- - **License:** Unknown -->
400
+
401
+ ### Model Sources
402
+
403
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
404
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
405
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
406
+
407
+ ### Full Model Architecture
408
+
409
+ ```
410
+ SentenceTransformer(
411
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
412
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
413
+ (2): Normalize()
414
+ )
415
+ ```
416
+
417
+ ## Usage
418
+
419
+ ### Direct Usage (Sentence Transformers)
420
+
421
+ First install the Sentence Transformers library:
422
+
423
+ ```bash
424
+ pip install -U sentence-transformers
425
+ ```
426
+
427
+ Then you can load this model and run inference.
428
+ ```python
429
+ from sentence_transformers import SentenceTransformer
430
+
431
+ # Download from the 🤗 Hub
432
+ model = SentenceTransformer("adriansanz/ST-tramits-sitges-006-5ep")
433
+ # Run inference
434
+ sentences = [
435
+ 'El Decret 97/2002, de 5 de març, regula la concessió de la targeta d’aparcament per a persones amb disminució i altres mesures adreçades a facilitar el desplaçament de les persones amb mobilitat reduïda.',
436
+ "Quin és el benefici de la targeta d'aparcament per a les persones amb disminució?",
437
+ 'Quin és el paper de la Junta de Govern Local?',
438
+ ]
439
+ embeddings = model.encode(sentences)
440
+ print(embeddings.shape)
441
+ # [3, 1024]
442
+
443
+ # Get the similarity scores for the embeddings
444
+ similarities = model.similarity(embeddings, embeddings)
445
+ print(similarities.shape)
446
+ # [3, 3]
447
+ ```
448
+
449
+ <!--
450
+ ### Direct Usage (Transformers)
451
+
452
+ <details><summary>Click to see the direct usage in Transformers</summary>
453
+
454
+ </details>
455
+ -->
456
+
457
+ <!--
458
+ ### Downstream Usage (Sentence Transformers)
459
+
460
+ You can finetune this model on your own dataset.
461
+
462
+ <details><summary>Click to expand</summary>
463
+
464
+ </details>
465
+ -->
466
+
467
+ <!--
468
+ ### Out-of-Scope Use
469
+
470
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
471
+ -->
472
+
473
+ ## Evaluation
474
+
475
+ ### Metrics
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_1024`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:----------|
483
+ | cosine_accuracy@1 | 0.1181 |
484
+ | cosine_accuracy@3 | 0.2328 |
485
+ | cosine_accuracy@5 | 0.3129 |
486
+ | cosine_accuracy@10 | 0.4644 |
487
+ | cosine_precision@1 | 0.1181 |
488
+ | cosine_precision@3 | 0.0776 |
489
+ | cosine_precision@5 | 0.0626 |
490
+ | cosine_precision@10 | 0.0464 |
491
+ | cosine_recall@1 | 0.1181 |
492
+ | cosine_recall@3 | 0.2328 |
493
+ | cosine_recall@5 | 0.3129 |
494
+ | cosine_recall@10 | 0.4644 |
495
+ | cosine_ndcg@10 | 0.2655 |
496
+ | cosine_mrr@10 | 0.2053 |
497
+ | **cosine_map@100** | **0.226** |
498
+
499
+ #### Information Retrieval
500
+ * Dataset: `dim_768`
501
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
502
+
503
+ | Metric | Value |
504
+ |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.1158 |
506
+ | cosine_accuracy@3 | 0.229 |
507
+ | cosine_accuracy@5 | 0.3113 |
508
+ | cosine_accuracy@10 | 0.4657 |
509
+ | cosine_precision@1 | 0.1158 |
510
+ | cosine_precision@3 | 0.0763 |
511
+ | cosine_precision@5 | 0.0623 |
512
+ | cosine_precision@10 | 0.0466 |
513
+ | cosine_recall@1 | 0.1158 |
514
+ | cosine_recall@3 | 0.229 |
515
+ | cosine_recall@5 | 0.3113 |
516
+ | cosine_recall@10 | 0.4657 |
517
+ | cosine_ndcg@10 | 0.2641 |
518
+ | cosine_mrr@10 | 0.2031 |
519
+ | **cosine_map@100** | **0.2236** |
520
+
521
+ #### Information Retrieval
522
+ * Dataset: `dim_512`
523
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
524
+
525
+ | Metric | Value |
526
+ |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.1191 |
528
+ | cosine_accuracy@3 | 0.2328 |
529
+ | cosine_accuracy@5 | 0.3176 |
530
+ | cosine_accuracy@10 | 0.4658 |
531
+ | cosine_precision@1 | 0.1191 |
532
+ | cosine_precision@3 | 0.0776 |
533
+ | cosine_precision@5 | 0.0635 |
534
+ | cosine_precision@10 | 0.0466 |
535
+ | cosine_recall@1 | 0.1191 |
536
+ | cosine_recall@3 | 0.2328 |
537
+ | cosine_recall@5 | 0.3176 |
538
+ | cosine_recall@10 | 0.4658 |
539
+ | cosine_ndcg@10 | 0.2667 |
540
+ | cosine_mrr@10 | 0.2064 |
541
+ | **cosine_map@100** | **0.2267** |
542
+
543
+ #### Information Retrieval
544
+ * Dataset: `dim_256`
545
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
546
+
547
+ | Metric | Value |
548
+ |:--------------------|:-----------|
549
+ | cosine_accuracy@1 | 0.1153 |
550
+ | cosine_accuracy@3 | 0.2266 |
551
+ | cosine_accuracy@5 | 0.3086 |
552
+ | cosine_accuracy@10 | 0.4567 |
553
+ | cosine_precision@1 | 0.1153 |
554
+ | cosine_precision@3 | 0.0755 |
555
+ | cosine_precision@5 | 0.0617 |
556
+ | cosine_precision@10 | 0.0457 |
557
+ | cosine_recall@1 | 0.1153 |
558
+ | cosine_recall@3 | 0.2266 |
559
+ | cosine_recall@5 | 0.3086 |
560
+ | cosine_recall@10 | 0.4567 |
561
+ | cosine_ndcg@10 | 0.2604 |
562
+ | cosine_mrr@10 | 0.201 |
563
+ | **cosine_map@100** | **0.2217** |
564
+
565
+ #### Information Retrieval
566
+ * Dataset: `dim_128`
567
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
568
+
569
+ | Metric | Value |
570
+ |:--------------------|:-----------|
571
+ | cosine_accuracy@1 | 0.1118 |
572
+ | cosine_accuracy@3 | 0.2233 |
573
+ | cosine_accuracy@5 | 0.3025 |
574
+ | cosine_accuracy@10 | 0.4529 |
575
+ | cosine_precision@1 | 0.1118 |
576
+ | cosine_precision@3 | 0.0744 |
577
+ | cosine_precision@5 | 0.0605 |
578
+ | cosine_precision@10 | 0.0453 |
579
+ | cosine_recall@1 | 0.1118 |
580
+ | cosine_recall@3 | 0.2233 |
581
+ | cosine_recall@5 | 0.3025 |
582
+ | cosine_recall@10 | 0.4529 |
583
+ | cosine_ndcg@10 | 0.2566 |
584
+ | cosine_mrr@10 | 0.1972 |
585
+ | **cosine_map@100** | **0.2178** |
586
+
587
+ #### Information Retrieval
588
+ * Dataset: `dim_64`
589
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
590
+
591
+ | Metric | Value |
592
+ |:--------------------|:-----------|
593
+ | cosine_accuracy@1 | 0.1069 |
594
+ | cosine_accuracy@3 | 0.2125 |
595
+ | cosine_accuracy@5 | 0.2885 |
596
+ | cosine_accuracy@10 | 0.4297 |
597
+ | cosine_precision@1 | 0.1069 |
598
+ | cosine_precision@3 | 0.0708 |
599
+ | cosine_precision@5 | 0.0577 |
600
+ | cosine_precision@10 | 0.043 |
601
+ | cosine_recall@1 | 0.1069 |
602
+ | cosine_recall@3 | 0.2125 |
603
+ | cosine_recall@5 | 0.2885 |
604
+ | cosine_recall@10 | 0.4297 |
605
+ | cosine_ndcg@10 | 0.2438 |
606
+ | cosine_mrr@10 | 0.1876 |
607
+ | **cosine_map@100** | **0.2081** |
608
+
609
+ <!--
610
+ ## Bias, Risks and Limitations
611
+
612
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
613
+ -->
614
+
615
+ <!--
616
+ ### Recommendations
617
+
618
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
619
+ -->
620
+
621
+ ## Training Details
622
+
623
+ ### Training Dataset
624
+
625
+ #### json
626
+
627
+ * Dataset: json
628
+ * Size: 2,844 training samples
629
+ * Columns: <code>positive</code> and <code>anchor</code>
630
+ * Approximate statistics based on the first 1000 samples:
631
+ | | positive | anchor |
632
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
633
+ | type | string | string |
634
+ | details | <ul><li>min: 3 tokens</li><li>mean: 49.45 tokens</li><li>max: 148 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.94 tokens</li><li>max: 45 tokens</li></ul> |
635
+ * Samples:
636
+ | positive | anchor |
637
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
638
+ | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges.</code> | <code>Quin és el benefici de les subvencions per a les entitats esportives?</code> |
639
+ | <code>Per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural, les entitats o associacions culturals de Sitges han de tenir una seu social a la ciutat de Sitges i estar inscrites en el Registre d'Entitats de la Generalitat de Catalunya.</code> | <code>Quin és el requisit per a poder ser beneficiari d'una subvenció per a un projecte o activitat cultural?</code> |
640
+ | <code>La cessió entre tercers, només es contempla en el cas de sepultures de construcció particular que hagin estat donades d'alta amb una anterioritat de 10 anys a la data de sol·licitud de la cessió.</code> | <code>Quin és el paper de la persona que, legalment hi tingui dret, en la cessió entre tercers?</code> |
641
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
642
+ ```json
643
+ {
644
+ "loss": "MultipleNegativesRankingLoss",
645
+ "matryoshka_dims": [
646
+ 1024,
647
+ 768,
648
+ 512,
649
+ 256,
650
+ 128,
651
+ 64
652
+ ],
653
+ "matryoshka_weights": [
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1,
658
+ 1,
659
+ 1
660
+ ],
661
+ "n_dims_per_step": -1
662
+ }
663
+ ```
664
+
665
+ ### Training Hyperparameters
666
+ #### Non-Default Hyperparameters
667
+
668
+ - `eval_strategy`: epoch
669
+ - `per_device_train_batch_size`: 16
670
+ - `per_device_eval_batch_size`: 16
671
+ - `gradient_accumulation_steps`: 16
672
+ - `learning_rate`: 2e-05
673
+ - `num_train_epochs`: 5
674
+ - `lr_scheduler_type`: cosine
675
+ - `warmup_ratio`: 0.2
676
+ - `bf16`: True
677
+ - `tf32`: True
678
+ - `load_best_model_at_end`: True
679
+ - `optim`: adamw_torch_fused
680
+ - `batch_sampler`: no_duplicates
681
+
682
+ #### All Hyperparameters
683
+ <details><summary>Click to expand</summary>
684
+
685
+ - `overwrite_output_dir`: False
686
+ - `do_predict`: False
687
+ - `eval_strategy`: epoch
688
+ - `prediction_loss_only`: True
689
+ - `per_device_train_batch_size`: 16
690
+ - `per_device_eval_batch_size`: 16
691
+ - `per_gpu_train_batch_size`: None
692
+ - `per_gpu_eval_batch_size`: None
693
+ - `gradient_accumulation_steps`: 16
694
+ - `eval_accumulation_steps`: None
695
+ - `torch_empty_cache_steps`: None
696
+ - `learning_rate`: 2e-05
697
+ - `weight_decay`: 0.0
698
+ - `adam_beta1`: 0.9
699
+ - `adam_beta2`: 0.999
700
+ - `adam_epsilon`: 1e-08
701
+ - `max_grad_norm`: 1.0
702
+ - `num_train_epochs`: 5
703
+ - `max_steps`: -1
704
+ - `lr_scheduler_type`: cosine
705
+ - `lr_scheduler_kwargs`: {}
706
+ - `warmup_ratio`: 0.2
707
+ - `warmup_steps`: 0
708
+ - `log_level`: passive
709
+ - `log_level_replica`: warning
710
+ - `log_on_each_node`: True
711
+ - `logging_nan_inf_filter`: True
712
+ - `save_safetensors`: True
713
+ - `save_on_each_node`: False
714
+ - `save_only_model`: False
715
+ - `restore_callback_states_from_checkpoint`: False
716
+ - `no_cuda`: False
717
+ - `use_cpu`: False
718
+ - `use_mps_device`: False
719
+ - `seed`: 42
720
+ - `data_seed`: None
721
+ - `jit_mode_eval`: False
722
+ - `use_ipex`: False
723
+ - `bf16`: True
724
+ - `fp16`: False
725
+ - `fp16_opt_level`: O1
726
+ - `half_precision_backend`: auto
727
+ - `bf16_full_eval`: False
728
+ - `fp16_full_eval`: False
729
+ - `tf32`: True
730
+ - `local_rank`: 0
731
+ - `ddp_backend`: None
732
+ - `tpu_num_cores`: None
733
+ - `tpu_metrics_debug`: False
734
+ - `debug`: []
735
+ - `dataloader_drop_last`: False
736
+ - `dataloader_num_workers`: 0
737
+ - `dataloader_prefetch_factor`: None
738
+ - `past_index`: -1
739
+ - `disable_tqdm`: False
740
+ - `remove_unused_columns`: True
741
+ - `label_names`: None
742
+ - `load_best_model_at_end`: True
743
+ - `ignore_data_skip`: False
744
+ - `fsdp`: []
745
+ - `fsdp_min_num_params`: 0
746
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
747
+ - `fsdp_transformer_layer_cls_to_wrap`: None
748
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
749
+ - `deepspeed`: None
750
+ - `label_smoothing_factor`: 0.0
751
+ - `optim`: adamw_torch_fused
752
+ - `optim_args`: None
753
+ - `adafactor`: False
754
+ - `group_by_length`: False
755
+ - `length_column_name`: length
756
+ - `ddp_find_unused_parameters`: None
757
+ - `ddp_bucket_cap_mb`: None
758
+ - `ddp_broadcast_buffers`: False
759
+ - `dataloader_pin_memory`: True
760
+ - `dataloader_persistent_workers`: False
761
+ - `skip_memory_metrics`: True
762
+ - `use_legacy_prediction_loop`: False
763
+ - `push_to_hub`: False
764
+ - `resume_from_checkpoint`: None
765
+ - `hub_model_id`: None
766
+ - `hub_strategy`: every_save
767
+ - `hub_private_repo`: False
768
+ - `hub_always_push`: False
769
+ - `gradient_checkpointing`: False
770
+ - `gradient_checkpointing_kwargs`: None
771
+ - `include_inputs_for_metrics`: False
772
+ - `eval_do_concat_batches`: True
773
+ - `fp16_backend`: auto
774
+ - `push_to_hub_model_id`: None
775
+ - `push_to_hub_organization`: None
776
+ - `mp_parameters`:
777
+ - `auto_find_batch_size`: False
778
+ - `full_determinism`: False
779
+ - `torchdynamo`: None
780
+ - `ray_scope`: last
781
+ - `ddp_timeout`: 1800
782
+ - `torch_compile`: False
783
+ - `torch_compile_backend`: None
784
+ - `torch_compile_mode`: None
785
+ - `dispatch_batches`: None
786
+ - `split_batches`: None
787
+ - `include_tokens_per_second`: False
788
+ - `include_num_input_tokens_seen`: False
789
+ - `neftune_noise_alpha`: None
790
+ - `optim_target_modules`: None
791
+ - `batch_eval_metrics`: False
792
+ - `eval_on_start`: False
793
+ - `eval_use_gather_object`: False
794
+ - `batch_sampler`: no_duplicates
795
+ - `multi_dataset_batch_sampler`: proportional
796
+
797
+ </details>
798
+
799
+ ### Training Logs
800
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
801
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
802
+ | 0.8989 | 10 | 3.2114 | - | - | - | - | - | - |
803
+ | 0.9888 | 11 | - | 0.2144 | 0.2008 | 0.2070 | 0.2126 | 0.1842 | 0.2126 |
804
+ | 1.7978 | 20 | 1.5622 | - | - | - | - | - | - |
805
+ | 1.9775 | 22 | - | 0.2179 | 0.2101 | 0.2169 | 0.2180 | 0.2012 | 0.2193 |
806
+ | 2.6966 | 30 | 0.7882 | - | - | - | - | - | - |
807
+ | 2.9663 | 33 | - | 0.2239 | 0.2162 | 0.2220 | 0.2238 | 0.2070 | 0.2222 |
808
+ | 3.5955 | 40 | 0.4956 | - | - | - | - | - | - |
809
+ | 3.9551 | 44 | - | 0.2270 | 0.2177 | 0.2231 | 0.2278 | 0.2084 | 0.2255 |
810
+ | 4.4944 | 50 | 0.392 | - | - | - | - | - | - |
811
+ | **4.9438** | **55** | **-** | **0.226** | **0.2178** | **0.2217** | **0.2267** | **0.2081** | **0.2236** |
812
+
813
+ * The bold row denotes the saved checkpoint.
814
+
815
+ ### Framework Versions
816
+ - Python: 3.10.12
817
+ - Sentence Transformers: 3.1.1
818
+ - Transformers: 4.44.2
819
+ - PyTorch: 2.4.1+cu121
820
+ - Accelerate: 0.35.0.dev0
821
+ - Datasets: 3.0.1
822
+ - Tokenizers: 0.19.1
823
+
824
+ ## Citation
825
+
826
+ ### BibTeX
827
+
828
+ #### Sentence Transformers
829
+ ```bibtex
830
+ @inproceedings{reimers-2019-sentence-bert,
831
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
832
+ author = "Reimers, Nils and Gurevych, Iryna",
833
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
834
+ month = "11",
835
+ year = "2019",
836
+ publisher = "Association for Computational Linguistics",
837
+ url = "https://arxiv.org/abs/1908.10084",
838
+ }
839
+ ```
840
+
841
+ #### MatryoshkaLoss
842
+ ```bibtex
843
+ @misc{kusupati2024matryoshka,
844
+ title={Matryoshka Representation Learning},
845
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
846
+ year={2024},
847
+ eprint={2205.13147},
848
+ archivePrefix={arXiv},
849
+ primaryClass={cs.LG}
850
+ }
851
+ ```
852
+
853
+ #### MultipleNegativesRankingLoss
854
+ ```bibtex
855
+ @misc{henderson2017efficient,
856
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
857
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
858
+ year={2017},
859
+ eprint={1705.00652},
860
+ archivePrefix={arXiv},
861
+ primaryClass={cs.CL}
862
+ }
863
+ ```
864
+
865
+ <!--
866
+ ## Glossary
867
+
868
+ *Clearly define terms in order to be accessible across audiences.*
869
+ -->
870
+
871
+ <!--
872
+ ## Model Card Authors
873
+
874
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
875
+ -->
876
+
877
+ <!--
878
+ ## Model Card Contact
879
+
880
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
881
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7958d201c0892925b3855d43730dccc49518ec73bca1ab0e3f332ecc45c566a2
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }