--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: fm-tc-authentic results: [] --- # fm-tc-authentic This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2183 - Accuracy: 0.684 - Precision: 0.4290 - Recall: 0.4443 - F1: 0.4224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.2298 | 1.0 | 568 | 1.5513 | 0.576 | 0.2101 | 0.2781 | 0.2186 | | 1.4142 | 2.0 | 1136 | 1.2728 | 0.652 | 0.3275 | 0.3903 | 0.3517 | | 1.1276 | 3.0 | 1704 | 1.2183 | 0.684 | 0.4290 | 0.4443 | 0.4224 | | 0.8384 | 4.0 | 2272 | 1.2388 | 0.672 | 0.5085 | 0.4718 | 0.4609 | | 0.6867 | 5.0 | 2840 | 1.2870 | 0.674 | 0.5075 | 0.4686 | 0.4597 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1