--- base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Quin és el percentatge de bonificació per a les famílies monoparentals o nombroses? - text: Salut, tanque's - text: Quin és el tema principal de l'informe previ? - text: Quin és el destinatari de la sol·licitud de canvi d'ubicació? - text: Què es necessita per obtenir una placa de gual? inference: true model-index: - name: SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9978448275862069 name: Accuracy --- # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9978 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("adriansanz/greetings-v2") # Run inference preds = model("Salut, tanque's") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 9.8187 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 100 | | 1 | 60 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0012 | 1 | 0.2127 | - | | 0.0581 | 50 | 0.1471 | - | | 0.1163 | 100 | 0.0168 | - | | 0.1744 | 150 | 0.001 | - | | 0.2326 | 200 | 0.0004 | - | | 0.2907 | 250 | 0.0002 | - | | 0.3488 | 300 | 0.0001 | - | | 0.4070 | 350 | 0.0001 | - | | 0.4651 | 400 | 0.0001 | - | | 0.5233 | 450 | 0.0001 | - | | 0.5814 | 500 | 0.0001 | - | | 0.6395 | 550 | 0.0001 | - | | 0.6977 | 600 | 0.0001 | - | | 0.7558 | 650 | 0.0 | - | | 0.8140 | 700 | 0.0 | - | | 0.8721 | 750 | 0.0 | - | | 0.9302 | 800 | 0.0 | - | | 0.9884 | 850 | 0.0 | - | | 1.0465 | 900 | 0.0 | - | | 1.1047 | 950 | 0.0 | - | | 1.1628 | 1000 | 0.0 | - | | 1.2209 | 1050 | 0.0 | - | | 1.2791 | 1100 | 0.0 | - | | 1.3372 | 1150 | 0.0 | - | | 1.3953 | 1200 | 0.0 | - | | 1.4535 | 1250 | 0.0 | - | | 1.5116 | 1300 | 0.0 | - | | 1.5698 | 1350 | 0.0 | - | | 1.6279 | 1400 | 0.0 | - | | 1.6860 | 1450 | 0.0 | - | | 1.7442 | 1500 | 0.0 | - | | 1.8023 | 1550 | 0.0 | - | | 1.8605 | 1600 | 0.0 | - | | 1.9186 | 1650 | 0.0 | - | | 1.9767 | 1700 | 0.0 | - | | 2.0349 | 1750 | 0.0 | - | | 2.0930 | 1800 | 0.0 | - | | 2.1512 | 1850 | 0.0 | - | | 2.2093 | 1900 | 0.0 | - | | 2.2674 | 1950 | 0.0 | - | | 2.3256 | 2000 | 0.0 | - | | 2.3837 | 2050 | 0.0 | - | | 2.4419 | 2100 | 0.0 | - | | 2.5 | 2150 | 0.0 | - | | 2.5581 | 2200 | 0.0 | - | | 2.6163 | 2250 | 0.0 | - | | 2.6744 | 2300 | 0.0 | - | | 2.7326 | 2350 | 0.0 | - | | 2.7907 | 2400 | 0.0 | - | | 2.8488 | 2450 | 0.0 | - | | 2.9070 | 2500 | 0.0 | - | | 2.9651 | 2550 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```