---
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Quin és el percentatge de bonificació per a les famílies monoparentals o nombroses?
- text: Salut, tanque's
- text: Quin és el tema principal de l'informe previ?
- text: Quin és el destinatari de la sol·licitud de canvi d'ubicació?
- text: Què es necessita per obtenir una placa de gual?
inference: true
model-index:
- name: SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9978448275862069
name: Accuracy
---
# SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |
- 'Bona nit, com estàs?'
- 'Ei, què tal tot?'
- 'Hola, com està el temps?'
|
| 0 | - 'Quin és el propòsit de la llicència administrativa?'
- 'Quin és el benefici de les subvencions per als infants?'
- "Què acredita el certificat d'empadronament col·lectiu?"
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9978 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/greetings-v2")
# Run inference
preds = model("Salut, tanque's")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 9.8187 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 100 |
| 1 | 60 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0012 | 1 | 0.2127 | - |
| 0.0581 | 50 | 0.1471 | - |
| 0.1163 | 100 | 0.0168 | - |
| 0.1744 | 150 | 0.001 | - |
| 0.2326 | 200 | 0.0004 | - |
| 0.2907 | 250 | 0.0002 | - |
| 0.3488 | 300 | 0.0001 | - |
| 0.4070 | 350 | 0.0001 | - |
| 0.4651 | 400 | 0.0001 | - |
| 0.5233 | 450 | 0.0001 | - |
| 0.5814 | 500 | 0.0001 | - |
| 0.6395 | 550 | 0.0001 | - |
| 0.6977 | 600 | 0.0001 | - |
| 0.7558 | 650 | 0.0 | - |
| 0.8140 | 700 | 0.0 | - |
| 0.8721 | 750 | 0.0 | - |
| 0.9302 | 800 | 0.0 | - |
| 0.9884 | 850 | 0.0 | - |
| 1.0465 | 900 | 0.0 | - |
| 1.1047 | 950 | 0.0 | - |
| 1.1628 | 1000 | 0.0 | - |
| 1.2209 | 1050 | 0.0 | - |
| 1.2791 | 1100 | 0.0 | - |
| 1.3372 | 1150 | 0.0 | - |
| 1.3953 | 1200 | 0.0 | - |
| 1.4535 | 1250 | 0.0 | - |
| 1.5116 | 1300 | 0.0 | - |
| 1.5698 | 1350 | 0.0 | - |
| 1.6279 | 1400 | 0.0 | - |
| 1.6860 | 1450 | 0.0 | - |
| 1.7442 | 1500 | 0.0 | - |
| 1.8023 | 1550 | 0.0 | - |
| 1.8605 | 1600 | 0.0 | - |
| 1.9186 | 1650 | 0.0 | - |
| 1.9767 | 1700 | 0.0 | - |
| 2.0349 | 1750 | 0.0 | - |
| 2.0930 | 1800 | 0.0 | - |
| 2.1512 | 1850 | 0.0 | - |
| 2.2093 | 1900 | 0.0 | - |
| 2.2674 | 1950 | 0.0 | - |
| 2.3256 | 2000 | 0.0 | - |
| 2.3837 | 2050 | 0.0 | - |
| 2.4419 | 2100 | 0.0 | - |
| 2.5 | 2150 | 0.0 | - |
| 2.5581 | 2200 | 0.0 | - |
| 2.6163 | 2250 | 0.0 | - |
| 2.6744 | 2300 | 0.0 | - |
| 2.7326 | 2350 | 0.0 | - |
| 2.7907 | 2400 | 0.0 | - |
| 2.8488 | 2450 | 0.0 | - |
| 2.9070 | 2500 | 0.0 | - |
| 2.9651 | 2550 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Datasets: 3.1.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```