---
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Hola!
- text: Hola, tinc algunes preguntes sobre tràmits que voldria fer.
- text: Quin és el propòsit de la garantia dels serveis adjudicats?
- text: Hola, quin és el paper dels dipòsits o fiances en la garantia dels serveis?
- text: Bona tarda! Què tal?
inference: true
---
# SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- 'Quin és el benefici de la devolució de fiances i avals?'
- 'Bon dia, quin és el procediment per obtenir la llicència?'
- 'Hola Bon dia, vull saber quin és el benefici de la devolució de fiances i avals.'
|
| 1 | - 'Ei, què tal? Com va tot?'
- "Bon dia, m'agradaria saber més sobre els tràmits disponibles."
- 'Ei, com et va?'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/gret3")
# Run inference
preds = model("Hola!")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 10.0083 | 17 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 60 |
| 1 | 60 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: epoch
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0022 | 1 | 0.2716 | - |
| 0.1092 | 50 | 0.1656 | - |
| 0.2183 | 100 | 0.0068 | - |
| 0.3275 | 150 | 0.0003 | - |
| 0.4367 | 200 | 0.0002 | - |
| 0.5459 | 250 | 0.0001 | - |
| 0.6550 | 300 | 0.0001 | - |
| 0.7642 | 350 | 0.0001 | - |
| 0.8734 | 400 | 0.0001 | - |
| 0.9825 | 450 | 0.0001 | - |
| 1.0 | 458 | - | 0.0002 |
| 0.0022 | 1 | 0.0001 | - |
| 0.1092 | 50 | 0.0001 | - |
| 0.2183 | 100 | 0.0001 | - |
| 0.3275 | 150 | 0.0016 | - |
| 0.4367 | 200 | 0.0002 | - |
| 0.5459 | 250 | 0.0 | - |
| 0.6550 | 300 | 0.0 | - |
| 0.7642 | 350 | 0.0 | - |
| 0.8734 | 400 | 0.0 | - |
| 0.9825 | 450 | 0.0 | - |
| 1.0 | 458 | - | 0.0001 |
| 1.0917 | 500 | 0.0 | - |
| 1.2009 | 550 | 0.0 | - |
| 1.3100 | 600 | 0.0 | - |
| 1.4192 | 650 | 0.0 | - |
| 1.5284 | 700 | 0.0 | - |
| 1.6376 | 750 | 0.0 | - |
| 1.7467 | 800 | 0.0 | - |
| 1.8559 | 850 | 0.0 | - |
| 1.9651 | 900 | 0.0 | - |
| 2.0 | 916 | - | 0.0000 |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.42.2
- PyTorch: 2.5.0+cu121
- Datasets: 3.1.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```