--- base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Hola! - text: Hola, tinc algunes preguntes sobre tràmits que voldria fer. - text: Quin és el propòsit de la garantia dels serveis adjudicats? - text: Hola, quin és el paper dels dipòsits o fiances en la garantia dels serveis? - text: Bona tarda! Què tal? inference: true --- # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("adriansanz/gret3") # Run inference preds = model("Hola!") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 10.0083 | 17 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 60 | | 1 | 60 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - evaluation_strategy: epoch - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0022 | 1 | 0.2716 | - | | 0.1092 | 50 | 0.1656 | - | | 0.2183 | 100 | 0.0068 | - | | 0.3275 | 150 | 0.0003 | - | | 0.4367 | 200 | 0.0002 | - | | 0.5459 | 250 | 0.0001 | - | | 0.6550 | 300 | 0.0001 | - | | 0.7642 | 350 | 0.0001 | - | | 0.8734 | 400 | 0.0001 | - | | 0.9825 | 450 | 0.0001 | - | | 1.0 | 458 | - | 0.0002 | | 0.0022 | 1 | 0.0001 | - | | 0.1092 | 50 | 0.0001 | - | | 0.2183 | 100 | 0.0001 | - | | 0.3275 | 150 | 0.0016 | - | | 0.4367 | 200 | 0.0002 | - | | 0.5459 | 250 | 0.0 | - | | 0.6550 | 300 | 0.0 | - | | 0.7642 | 350 | 0.0 | - | | 0.8734 | 400 | 0.0 | - | | 0.9825 | 450 | 0.0 | - | | 1.0 | 458 | - | 0.0001 | | 1.0917 | 500 | 0.0 | - | | 1.2009 | 550 | 0.0 | - | | 1.3100 | 600 | 0.0 | - | | 1.4192 | 650 | 0.0 | - | | 1.5284 | 700 | 0.0 | - | | 1.6376 | 750 | 0.0 | - | | 1.7467 | 800 | 0.0 | - | | 1.8559 | 850 | 0.0 | - | | 1.9651 | 900 | 0.0 | - | | 2.0 | 916 | - | 0.0000 | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.42.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```