--- base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Aquest text és Varis - text: Aquest text és Mobiliari Urbà - text: Aquest text és Velocitat - text: Aquest text és Parcs i Jardins - text: Aquest text és Enllumenat inference: true --- # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 14 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | 11 | | | 12 | | | 13 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("adriansanz/setfitemotions") # Run inference preds = model("Aquest text és Varis") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 4.2143 | 6 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 10 | | 1 | 10 | | 2 | 10 | | 3 | 10 | | 4 | 10 | | 5 | 10 | | 6 | 10 | | 7 | 10 | | 8 | 10 | | 9 | 10 | | 10 | 10 | | 11 | 10 | | 12 | 10 | | 13 | 10 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.2021 | - | | 0.0439 | 50 | 0.0263 | - | | 0.0879 | 100 | 0.0032 | - | | 0.1318 | 150 | 0.0015 | - | | 0.1757 | 200 | 0.0012 | - | | 0.2197 | 250 | 0.0007 | - | | 0.2636 | 300 | 0.0008 | - | | 0.3076 | 350 | 0.0006 | - | | 0.3515 | 400 | 0.0003 | - | | 0.3954 | 450 | 0.0003 | - | | 0.4394 | 500 | 0.0004 | - | | 0.4833 | 550 | 0.0005 | - | | 0.5272 | 600 | 0.0004 | - | | 0.5712 | 650 | 0.0005 | - | | 0.6151 | 700 | 0.0005 | - | | 0.6591 | 750 | 0.0002 | - | | 0.7030 | 800 | 0.0001 | - | | 0.7469 | 850 | 0.0004 | - | | 0.7909 | 900 | 0.0002 | - | | 0.8348 | 950 | 0.0003 | - | | 0.8787 | 1000 | 0.0002 | - | | 0.9227 | 1050 | 0.0002 | - | | 0.9666 | 1100 | 0.0003 | - | | 1.0105 | 1150 | 0.0002 | - | | 1.0545 | 1200 | 0.0002 | - | | 1.0984 | 1250 | 0.0002 | - | | 1.1424 | 1300 | 0.0003 | - | | 1.1863 | 1350 | 0.0003 | - | | 1.2302 | 1400 | 0.0001 | - | | 1.2742 | 1450 | 0.0002 | - | | 1.3181 | 1500 | 0.0001 | - | | 1.3620 | 1550 | 0.0001 | - | | 1.4060 | 1600 | 0.0003 | - | | 1.4499 | 1650 | 0.0001 | - | | 1.4938 | 1700 | 0.0001 | - | | 1.5378 | 1750 | 0.0001 | - | | 1.5817 | 1800 | 0.0001 | - | | 1.6257 | 1850 | 0.0001 | - | | 1.6696 | 1900 | 0.0001 | - | | 1.7135 | 1950 | 0.0001 | - | | 1.7575 | 2000 | 0.0002 | - | | 1.8014 | 2050 | 0.0001 | - | | 1.8453 | 2100 | 0.0001 | - | | 1.8893 | 2150 | 0.0002 | - | | 1.9332 | 2200 | 0.0001 | - | | 1.9772 | 2250 | 0.0002 | - | | 2.0211 | 2300 | 0.0001 | - | | 2.0650 | 2350 | 0.0001 | - | | 2.1090 | 2400 | 0.0001 | - | | 2.1529 | 2450 | 0.0001 | - | | 2.1968 | 2500 | 0.0001 | - | | 2.2408 | 2550 | 0.0001 | - | | 2.2847 | 2600 | 0.0 | - | | 2.3286 | 2650 | 0.0001 | - | | 2.3726 | 2700 | 0.0001 | - | | 2.4165 | 2750 | 0.0001 | - | | 2.4605 | 2800 | 0.0001 | - | | 2.5044 | 2850 | 0.0001 | - | | 2.5483 | 2900 | 0.0001 | - | | 2.5923 | 2950 | 0.0001 | - | | 2.6362 | 3000 | 0.0001 | - | | 2.6801 | 3050 | 0.0001 | - | | 2.7241 | 3100 | 0.0001 | - | | 2.7680 | 3150 | 0.0001 | - | | 2.8120 | 3200 | 0.0001 | - | | 2.8559 | 3250 | 0.0001 | - | | 2.8998 | 3300 | 0.0001 | - | | 2.9438 | 3350 | 0.0001 | - | | 2.9877 | 3400 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```