File size: 3,508 Bytes
3147d3d 35d63be 3147d3d 35d63be 3147d3d 35d63be 3147d3d 35d63be 3147d3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: SYN_300524_epoch_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SYN_300524_epoch_5
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3372
- Accuracy: 0.98
- Precision: 0.9803
- Recall: 0.98
- F1: 0.9800
- Ratio: 0.488
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----:|
| 0.3174 | 0.0533 | 10 | 0.3307 | 0.984 | 0.9840 | 0.984 | 0.9840 | 0.496 |
| 0.3202 | 0.1067 | 20 | 0.3258 | 0.986 | 0.9861 | 0.986 | 0.9860 | 0.494 |
| 0.3016 | 0.16 | 30 | 0.3282 | 0.986 | 0.9860 | 0.986 | 0.9860 | 0.504 |
| 0.3291 | 0.2133 | 40 | 0.3495 | 0.977 | 0.9774 | 0.977 | 0.9770 | 0.485 |
| 0.2942 | 0.2667 | 50 | 0.3602 | 0.973 | 0.9738 | 0.973 | 0.9730 | 0.479 |
| 0.3121 | 0.32 | 60 | 0.3586 | 0.973 | 0.9731 | 0.973 | 0.9730 | 0.493 |
| 0.3226 | 0.3733 | 70 | 0.3736 | 0.968 | 0.9681 | 0.968 | 0.9680 | 0.508 |
| 0.3226 | 0.4267 | 80 | 0.3515 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 |
| 0.3265 | 0.48 | 90 | 0.3697 | 0.97 | 0.9706 | 0.97 | 0.9700 | 0.482 |
| 0.3424 | 0.5333 | 100 | 0.3650 | 0.971 | 0.9717 | 0.971 | 0.9710 | 0.481 |
| 0.3348 | 0.5867 | 110 | 0.3502 | 0.976 | 0.9760 | 0.976 | 0.9760 | 0.496 |
| 0.3393 | 0.64 | 120 | 0.3441 | 0.978 | 0.9780 | 0.978 | 0.9780 | 0.496 |
| 0.3421 | 0.6933 | 130 | 0.3397 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 |
| 0.3319 | 0.7467 | 140 | 0.3412 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 |
| 0.3554 | 0.8 | 150 | 0.3416 | 0.977 | 0.9772 | 0.977 | 0.9770 | 0.489 |
| 0.3829 | 0.8533 | 160 | 0.3428 | 0.978 | 0.9785 | 0.978 | 0.9780 | 0.484 |
| 0.3631 | 0.9067 | 170 | 0.3396 | 0.979 | 0.9793 | 0.979 | 0.9790 | 0.487 |
| 0.3362 | 0.96 | 180 | 0.3376 | 0.98 | 0.9803 | 0.98 | 0.9800 | 0.488 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|