--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: SYN_300524_epoch_5 results: [] --- # SYN_300524_epoch_5 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3372 - Accuracy: 0.98 - Precision: 0.9803 - Recall: 0.98 - F1: 0.9800 - Ratio: 0.488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----:| | 0.3174 | 0.0533 | 10 | 0.3307 | 0.984 | 0.9840 | 0.984 | 0.9840 | 0.496 | | 0.3202 | 0.1067 | 20 | 0.3258 | 0.986 | 0.9861 | 0.986 | 0.9860 | 0.494 | | 0.3016 | 0.16 | 30 | 0.3282 | 0.986 | 0.9860 | 0.986 | 0.9860 | 0.504 | | 0.3291 | 0.2133 | 40 | 0.3495 | 0.977 | 0.9774 | 0.977 | 0.9770 | 0.485 | | 0.2942 | 0.2667 | 50 | 0.3602 | 0.973 | 0.9738 | 0.973 | 0.9730 | 0.479 | | 0.3121 | 0.32 | 60 | 0.3586 | 0.973 | 0.9731 | 0.973 | 0.9730 | 0.493 | | 0.3226 | 0.3733 | 70 | 0.3736 | 0.968 | 0.9681 | 0.968 | 0.9680 | 0.508 | | 0.3226 | 0.4267 | 80 | 0.3515 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 | | 0.3265 | 0.48 | 90 | 0.3697 | 0.97 | 0.9706 | 0.97 | 0.9700 | 0.482 | | 0.3424 | 0.5333 | 100 | 0.3650 | 0.971 | 0.9717 | 0.971 | 0.9710 | 0.481 | | 0.3348 | 0.5867 | 110 | 0.3502 | 0.976 | 0.9760 | 0.976 | 0.9760 | 0.496 | | 0.3393 | 0.64 | 120 | 0.3441 | 0.978 | 0.9780 | 0.978 | 0.9780 | 0.496 | | 0.3421 | 0.6933 | 130 | 0.3397 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 | | 0.3319 | 0.7467 | 140 | 0.3412 | 0.979 | 0.9791 | 0.979 | 0.9790 | 0.493 | | 0.3554 | 0.8 | 150 | 0.3416 | 0.977 | 0.9772 | 0.977 | 0.9770 | 0.489 | | 0.3829 | 0.8533 | 160 | 0.3428 | 0.978 | 0.9785 | 0.978 | 0.9780 | 0.484 | | 0.3631 | 0.9067 | 170 | 0.3396 | 0.979 | 0.9793 | 0.979 | 0.9790 | 0.487 | | 0.3362 | 0.96 | 180 | 0.3376 | 0.98 | 0.9803 | 0.98 | 0.9800 | 0.488 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1