--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: SYN_300524_epoch_2 results: [] --- # SYN_300524_epoch_2 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3618 - Accuracy: 0.972 - Precision: 0.9723 - Recall: 0.972 - F1: 0.9720 - Ratio: 0.488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 47 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----:| | 0.3977 | 0.0533 | 10 | 0.3957 | 0.951 | 0.9530 | 0.9510 | 0.9509 | 0.467 | | 0.4006 | 0.1067 | 20 | 0.3771 | 0.96 | 0.9609 | 0.96 | 0.9600 | 0.478 | | 0.3774 | 0.16 | 30 | 0.3709 | 0.963 | 0.9632 | 0.963 | 0.9630 | 0.491 | | 0.3894 | 0.2133 | 40 | 0.3956 | 0.958 | 0.9592 | 0.958 | 0.9580 | 0.474 | | 0.3423 | 0.2667 | 50 | 0.3938 | 0.96 | 0.9606 | 0.96 | 0.9600 | 0.482 | | 0.3965 | 0.32 | 60 | 0.3794 | 0.959 | 0.9597 | 0.959 | 0.9590 | 0.481 | | 0.3998 | 0.3733 | 70 | 0.3602 | 0.967 | 0.9670 | 0.967 | 0.9670 | 0.497 | | 0.3718 | 0.4267 | 80 | 0.3998 | 0.956 | 0.9576 | 0.956 | 0.9560 | 0.47 | | 0.3924 | 0.48 | 90 | 0.3829 | 0.963 | 0.9638 | 0.963 | 0.9630 | 0.479 | | 0.371 | 0.5333 | 100 | 0.3816 | 0.966 | 0.9666 | 0.966 | 0.9660 | 0.482 | | 0.3752 | 0.5867 | 110 | 0.3727 | 0.967 | 0.9675 | 0.967 | 0.9670 | 0.483 | | 0.3631 | 0.64 | 120 | 0.3669 | 0.966 | 0.9665 | 0.966 | 0.9660 | 0.484 | | 0.3934 | 0.6933 | 130 | 0.3641 | 0.968 | 0.9684 | 0.968 | 0.9680 | 0.486 | | 0.3536 | 0.7467 | 140 | 0.3588 | 0.97 | 0.9701 | 0.97 | 0.9700 | 0.494 | | 0.3542 | 0.8 | 150 | 0.3565 | 0.971 | 0.9710 | 0.971 | 0.9710 | 0.495 | | 0.3785 | 0.8533 | 160 | 0.3580 | 0.971 | 0.9711 | 0.971 | 0.9710 | 0.493 | | 0.3557 | 0.9067 | 170 | 0.3616 | 0.971 | 0.9713 | 0.971 | 0.9710 | 0.487 | | 0.3592 | 0.96 | 180 | 0.3618 | 0.972 | 0.9723 | 0.972 | 0.9720 | 0.488 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1