adrienJeg commited on
Commit
f010a9e
·
1 Parent(s): 29e9ddf

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2063.23 +/- 65.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc90a49f2eeffb5e9f2cd16d074f9bb83c295198923ca34d38f1f016117be1e3
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f18b70a9940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18b70a99d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18b70a9a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18b70a9af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f18b70a9b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f18b70a9c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18b70a9ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18b70a9d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f18b70a9dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18b70a9e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18b70a9ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18b70a9f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f18b70aabc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1682513889011526660,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJe3TT4GxwI/IfjlPmAWNj6iMIU/FDYXPxyKpb8zVG6+2CVUPzLP5bxDfJS/HkGcPUmaaj8K3L4/mU5zPxDqtTzoWas/8ARNQEMscL8Ojy6/3ALlvvEPOz8D4bg/HVchPrwFc79SvP0+KAkAwADzdT9gYhs/aga3vqmQ9z70h40/JezCP2o1lb/drgY8t9mWvl3JVD9gty69uacYv0NI6j++I7c/prqTv1cDjD6J58W/IrAsP1Vum7+R7wC/pC7dPoQrR7/9Ji0+vaZNPgraBsC8BXO/Urz9PrDt/z4SO4W/6anVPvtwHD9u7M0+X+hfP6v7kz/NpKe/ZCDnv1SCb77Xqls/sUY/vl6Vo77xEck/0kHqP5uAvb/apXE/om9vPI6JiT/Apq2/9Ar2v1nQL8DeY2Y/lRIVPblOJECXqaM+vAVzv1K8/T6w7f8+APN1P3UW+j4f0Qy/61TNPh9ILz9spWO/z/mWPx5/PL/H+m2+uYVDPzrGiL7nwKC/pbPXPkAbbL63xYY/NSMsPun/Sj9MoI6/GAKoP3xIJb5axxS/kwxMvz9srb2KfJk/397APrwFc79SvP0+sO3/PhI7hb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABV5zC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX3PkPQAAAAAL7P+/AAAAAPNdCL4AAAAAkWTuPwAAAAD5C8G9AAAAACgL8T8AAAAAJzPzPQAAAABOiOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY1qCtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGSZoz0AAAAA7Br2vwAAAAAFwba6AAAAAKft5T8AAAAAygiVPQAAAACdLfc/AAAAAHsMBz0AAAAA6cf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiApbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfSXY9AAAAAD+g/r8AAAAA+Pt+PQAAAABh8uE/AAAAAOUZ2L0AAAAAda7lPwAAAACY39Y9AAAAAPSd478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdTpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA25ofvQAAAAC1zADAAAAAAFl37T0AAAAADk3fPwAAAAAzVFg9AAAAAPj92D8AAAAABQPSPAAAAAAtZOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJT9ITZg5R2MAWyUTegDjAF0lEdAqtum2JBPbnV9lChoBkdAlwz/pdKNAGgHTegDaAhHQKrepOxjawl1fZQoaAZHQJnB9alk6LhoB03oA2gIR0Cq5NfywwCbdX2UKGgGR0CTI8wNb1RMaAdN6ANoCEdAquVri6xxDXV9lChoBkdAljKwpON5t2gHTegDaAhHQKrsMgDA8CB1fZQoaAZHQJYUIUnG829oB03oA2gIR0Cq7rWkBS1mdX2UKGgGR0CdEJfqX4TLaAdN6ANoCEdAqvJuOOsDGXV9lChoBkdAmJz7x7RfGGgHTegDaAhHQKryzkI5YHR1fZQoaAZHQJipUCRwIdFoB03oA2gIR0Cq+FYq5LAYdX2UKGgGR0CUeUc5sCT2aAdN6ANoCEdAqvrQ2sJY1nV9lChoBkdAmE4YZ62OQ2gHTegDaAhHQKsAOUL2HtZ1fZQoaAZHQJwjkZqEeyRoB03oA2gIR0CrANNAcDKYdX2UKGgGR0CZh1ddmg8KaAdN6ANoCEdAqwm+ZRbbDnV9lChoBkdAlI0AC0WuYGgHTegDaAhHQKsMOMpgCwN1fZQoaAZHQJvMEwmE5ABoB03oA2gIR0CrEBXkYGdJdX2UKGgGR0CZqrALRa5gaAdN6ANoCEdAqxByNwR5DHV9lChoBkdAngGldszl92gHTegDaAhHQKsV0muTzNF1fZQoaAZHQJ0Rif8MuvloB03oA2gIR0CrGGO6mO2idX2UKGgGR0CXMgHQhOgyaAdN6ANoCEdAqxw5kqc3EXV9lChoBkdAm7dmaDwpfGgHTegDaAhHQKscmmplz2h1fZQoaAZHQJZHrvmYBvJoB03oA2gIR0CrJOU52hZhdX2UKGgGR0CX/0srNGExaAdN6ANoCEdAqyjDe67NCHV9lChoBkdAmsf5dnkDIWgHTegDaAhHQKssjopQUHp1fZQoaAZHQJxRnn3cpLFoB03oA2gIR0CrLOpsGgSOdX2UKGgGR0CVqN+wC8vmaAdN6ANoCEdAqzJ67ROUMXV9lChoBkdAkwtRwyZa3mgHTegDaAhHQKs1GAQxveh1fZQoaAZHQJh6YD7qIJtoB03oA2gIR0CrOOQDvE0jdX2UKGgGR0CXtmlHjIaMaAdN6ANoCEdAqzk/Ns3yZ3V9lChoBkdAl+pV/Ue+22gHTegDaAhHQKs/79x6v7p1fZQoaAZHQJimMtdzGPxoB03oA2gIR0CrQ8sCT2WZdX2UKGgGR0CaMMSqlxffaAdN6ANoCEdAq0nNg8bJfnV9lChoBkdAl55vVZs9CGgHTegDaAhHQKtKKXBP9DR1fZQoaAZHQJkZf1WbPQhoB03oA2gIR0CrT7mpVCHAdX2UKGgGR0CZJxbdrO7haAdN6ANoCEdAq1I0Eq2BrnV9lChoBkdAmAKYTTOPemgHTegDaAhHQKtWFEIgNgB1fZQoaAZHQJwJFb4agmJoB03oA2gIR0CrVm0F8ohIdX2UKGgGR0CUGjgDA8B/aAdNXANoCEdAq1o0MCtA9nV9lChoBkdAmzAB95QgtGgHTegDaAhHQKte73u/k/91fZQoaAZHQJ7iKlchTwVoB03oA2gIR0CrZSt0V8CxdX2UKGgGR0CWcycj7hvSaAdN6ANoCEdAq2XGMsH0LHV9lChoBkdAmpSYBFNL12gHTegDaAhHQKtqzL2YfGN1fZQoaAZHQJ0lZd4Vym1oB03oA2gIR0CrbwLbpNbkdX2UKGgGR0Cg7h1VHWjHaAdN6ANoCEdAq3LvGS6lL3V9lChoBkdAm5eiCOFQEmgHTegDaAhHQKtzTLkCFK11fZQoaAZHQJ6BmOuJUHZoB03oA2gIR0CrdwytmthedX2UKGgGR0Cdhf55Z8rqaAdN6ANoCEdAq3toMjNY83V9lChoBkdAoKvmnuRcNmgHTegDaAhHQKuBHhZQpF11fZQoaAZHQKAmpIJZ4fRoB03oA2gIR0CrgbxmK64EdX2UKGgGR0CgHKYx+KCQaAdN6ANoCEdAq4fXFDOTq3V9lChoBkdAm76eTeO4omgHTegDaAhHQKuMy4ACGN91fZQoaAZHQJ7c0GGEf1ZoB03oA2gIR0CrkKMmfGuLdX2UKGgGR0CejvRb8m8eaAdN6ANoCEdAq5D4HxBmgHV9lChoBkdAkf2QKKHfuWgHTegDaAhHQKuUznbqQil1fZQoaAZHQJsOgRaouPFoB03oA2gIR0CrmSlyq+8HdX2UKGgGR0CWkt31BdD6aAdN6ANoCEdAq502tuDSPXV9lChoBkdAnrlEh3aBZ2gHTegDaAhHQKudrU8V58l1fZQoaAZHQJ7VBeNT989oB03oA2gIR0Cro4IP07KadX2UKGgGR0Cc/58P4EfUaAdN6ANoCEdAq6mU690zTHV9lChoBkdAnEFcXvYvnWgHTegDaAhHQKutZXEIgNh1fZQoaAZHQJ8brvG6wt9oB03oA2gIR0Crrb9l2/zrdX2UKGgGR0Cea6pdKNADaAdN6ANoCEdAq7GG3fAKv3V9lChoBkdAn/Uj19ORDGgHTegDaAhHQKu1qWqLjxV1fZQoaAZHQKAP6jO9nK5oB03oA2gIR0CruW/qPfbcdX2UKGgGR0Cevm938n/laAdN6ANoCEdAq7nFP557gXV9lChoBkdAn1A6L4vexmgHTegDaAhHQKu+GifQKKJ1fZQoaAZHQJomBq7AcktoB03oA2gIR0CrxKfWlMyrdX2UKGgGR0Cfp6LAHmihaAdN6ANoCEdAq8pGDDjzZ3V9lChoBkdAoFeKuW8h92gHTegDaAhHQKvKowJw84h1fZQoaAZHQJ2WgaIeo1loB03oA2gIR0Crzny/j81odX2UKGgGR0Cd0WQ4jrzHaAdN6ANoCEdAq9K1QQ+UyHV9lChoBkdAoHhNTHbRGGgHTegDaAhHQKvWiAoXsPd1fZQoaAZHQJ6m1lf7aZhoB03oA2gIR0Cr1ucpLEk0dX2UKGgGR0Cd2edkrf+CaAdN6ANoCEdAq9q1qi48U3V9lChoBkdAmV8k6gdwN2gHTegDaAhHQKvgJnM+u/11fZQoaAZHQIT0IHqu8sdoB03oA2gIR0Cr5nE/jbSJdX2UKGgGR0CaVHMyJsO5aAdN6ANoCEdAq+cILkS26XV9lChoBkdAoOmJ/wy6+WgHTegDaAhHQKvrU5nUUfx1fZQoaAZHQKB8rmrbQC1oB03oA2gIR0Cr74oddVvNdX2UKGgGR0Cek4lvqC6IaAdN6ANoCEdAq/NDxwyZa3V9lChoBkdAnJSgco6S1WgHTegDaAhHQKvzm53C9AZ1fZQoaAZHQJ6CjR8c+7loB03oA2gIR0Cr916Jyhi9dX2UKGgGR0CduVuwHJLeaAdN6ANoCEdAq/uaX4TK1XV9lChoBkdAnnopXdTHbWgHTegDaAhHQKwBh4fwI+p1fZQoaAZHQJ5zojkdWABoB03oA2gIR0CsAhG3F1jidX2UKGgGR0CdAl7o0Q9SaAdN6ANoCEdArAhGCEpRXXV9lChoBkdAnkkWw7kn1GgHTegDaAhHQKwMseHSF491fZQoaAZHQJjL5rFfiP1oB03oA2gIR0CsEJsQmNR4dX2UKGgGR0CPTQS/0ulHaAdN6ANoCEdArBD143WFvnV9lChoBkdAmg0ZB9kSVWgHTegDaAhHQKwUwkleF+N1fZQoaAZHQJyI00SAYpFoB03oA2gIR0CsGPkAggX/dX2UKGgGR0CbeXTWXkYGaAdN6ANoCEdArBz4FotcwHV9lChoBkdAnxPTa9K28mgHTegDaAhHQKwdghr30wt1fZQoaAZHQJ1IrdvbXYloB03oA2gIR0CsI2lrEcbSdX2UKGgGR0CUe0ZFocrBaAdN6ANoCEdArCmOA5JbuHV9lChoBkdAnqajZUT+N2gHTegDaAhHQKwtXqSowVV1fZQoaAZHQJzIxYEGJN1oB03oA2gIR0CsLbgLZzxPdX2UKGgGR0CPEwaH9FWoaAdN6ANoCEdArDGFT72tdXV9lChoBkdAnXGkuQIUrWgHTegDaAhHQKw1v0h/y5J1fZQoaAZHQJ6hB1ZDArRoB03oA2gIR0CsOYIysS00dX2UKGgGR0CepuFSsKb8aAdN6ANoCEdArDneHFglW3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6941f4235c1003e53df758e511776eaf457ee2a11b1f07ef6bd8d96073440142
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f2f7cfe0f601d597362654d705ce2fc9b5726316dc4e4bcddfad7f76a809878
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f18b70a9940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18b70a99d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18b70a9a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18b70a9af0>", "_build": "<function ActorCriticPolicy._build at 0x7f18b70a9b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f18b70a9c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18b70a9ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18b70a9d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f18b70a9dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18b70a9e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18b70a9ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18b70a9f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f18b70aabc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682513889011526660, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJe3TT4GxwI/IfjlPmAWNj6iMIU/FDYXPxyKpb8zVG6+2CVUPzLP5bxDfJS/HkGcPUmaaj8K3L4/mU5zPxDqtTzoWas/8ARNQEMscL8Ojy6/3ALlvvEPOz8D4bg/HVchPrwFc79SvP0+KAkAwADzdT9gYhs/aga3vqmQ9z70h40/JezCP2o1lb/drgY8t9mWvl3JVD9gty69uacYv0NI6j++I7c/prqTv1cDjD6J58W/IrAsP1Vum7+R7wC/pC7dPoQrR7/9Ji0+vaZNPgraBsC8BXO/Urz9PrDt/z4SO4W/6anVPvtwHD9u7M0+X+hfP6v7kz/NpKe/ZCDnv1SCb77Xqls/sUY/vl6Vo77xEck/0kHqP5uAvb/apXE/om9vPI6JiT/Apq2/9Ar2v1nQL8DeY2Y/lRIVPblOJECXqaM+vAVzv1K8/T6w7f8+APN1P3UW+j4f0Qy/61TNPh9ILz9spWO/z/mWPx5/PL/H+m2+uYVDPzrGiL7nwKC/pbPXPkAbbL63xYY/NSMsPun/Sj9MoI6/GAKoP3xIJb5axxS/kwxMvz9srb2KfJk/397APrwFc79SvP0+sO3/PhI7hb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABV5zC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX3PkPQAAAAAL7P+/AAAAAPNdCL4AAAAAkWTuPwAAAAD5C8G9AAAAACgL8T8AAAAAJzPzPQAAAABOiOy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY1qCtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGSZoz0AAAAA7Br2vwAAAAAFwba6AAAAAKft5T8AAAAAygiVPQAAAACdLfc/AAAAAHsMBz0AAAAA6cf3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiApbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfSXY9AAAAAD+g/r8AAAAA+Pt+PQAAAABh8uE/AAAAAOUZ2L0AAAAAda7lPwAAAACY39Y9AAAAAPSd478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdTpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA25ofvQAAAAC1zADAAAAAAFl37T0AAAAADk3fPwAAAAAzVFg9AAAAAPj92D8AAAAABQPSPAAAAAAtZOO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJT9ITZg5R2MAWyUTegDjAF0lEdAqtum2JBPbnV9lChoBkdAlwz/pdKNAGgHTegDaAhHQKrepOxjawl1fZQoaAZHQJnB9alk6LhoB03oA2gIR0Cq5NfywwCbdX2UKGgGR0CTI8wNb1RMaAdN6ANoCEdAquVri6xxDXV9lChoBkdAljKwpON5t2gHTegDaAhHQKrsMgDA8CB1fZQoaAZHQJYUIUnG829oB03oA2gIR0Cq7rWkBS1mdX2UKGgGR0CdEJfqX4TLaAdN6ANoCEdAqvJuOOsDGXV9lChoBkdAmJz7x7RfGGgHTegDaAhHQKryzkI5YHR1fZQoaAZHQJipUCRwIdFoB03oA2gIR0Cq+FYq5LAYdX2UKGgGR0CUeUc5sCT2aAdN6ANoCEdAqvrQ2sJY1nV9lChoBkdAmE4YZ62OQ2gHTegDaAhHQKsAOUL2HtZ1fZQoaAZHQJwjkZqEeyRoB03oA2gIR0CrANNAcDKYdX2UKGgGR0CZh1ddmg8KaAdN6ANoCEdAqwm+ZRbbDnV9lChoBkdAlI0AC0WuYGgHTegDaAhHQKsMOMpgCwN1fZQoaAZHQJvMEwmE5ABoB03oA2gIR0CrEBXkYGdJdX2UKGgGR0CZqrALRa5gaAdN6ANoCEdAqxByNwR5DHV9lChoBkdAngGldszl92gHTegDaAhHQKsV0muTzNF1fZQoaAZHQJ0Rif8MuvloB03oA2gIR0CrGGO6mO2idX2UKGgGR0CXMgHQhOgyaAdN6ANoCEdAqxw5kqc3EXV9lChoBkdAm7dmaDwpfGgHTegDaAhHQKscmmplz2h1fZQoaAZHQJZHrvmYBvJoB03oA2gIR0CrJOU52hZhdX2UKGgGR0CX/0srNGExaAdN6ANoCEdAqyjDe67NCHV9lChoBkdAmsf5dnkDIWgHTegDaAhHQKssjopQUHp1fZQoaAZHQJxRnn3cpLFoB03oA2gIR0CrLOpsGgSOdX2UKGgGR0CVqN+wC8vmaAdN6ANoCEdAqzJ67ROUMXV9lChoBkdAkwtRwyZa3mgHTegDaAhHQKs1GAQxveh1fZQoaAZHQJh6YD7qIJtoB03oA2gIR0CrOOQDvE0jdX2UKGgGR0CXtmlHjIaMaAdN6ANoCEdAqzk/Ns3yZ3V9lChoBkdAl+pV/Ue+22gHTegDaAhHQKs/79x6v7p1fZQoaAZHQJimMtdzGPxoB03oA2gIR0CrQ8sCT2WZdX2UKGgGR0CaMMSqlxffaAdN6ANoCEdAq0nNg8bJfnV9lChoBkdAl55vVZs9CGgHTegDaAhHQKtKKXBP9DR1fZQoaAZHQJkZf1WbPQhoB03oA2gIR0CrT7mpVCHAdX2UKGgGR0CZJxbdrO7haAdN6ANoCEdAq1I0Eq2BrnV9lChoBkdAmAKYTTOPemgHTegDaAhHQKtWFEIgNgB1fZQoaAZHQJwJFb4agmJoB03oA2gIR0CrVm0F8ohIdX2UKGgGR0CUGjgDA8B/aAdNXANoCEdAq1o0MCtA9nV9lChoBkdAmzAB95QgtGgHTegDaAhHQKte73u/k/91fZQoaAZHQJ7iKlchTwVoB03oA2gIR0CrZSt0V8CxdX2UKGgGR0CWcycj7hvSaAdN6ANoCEdAq2XGMsH0LHV9lChoBkdAmpSYBFNL12gHTegDaAhHQKtqzL2YfGN1fZQoaAZHQJ0lZd4Vym1oB03oA2gIR0CrbwLbpNbkdX2UKGgGR0Cg7h1VHWjHaAdN6ANoCEdAq3LvGS6lL3V9lChoBkdAm5eiCOFQEmgHTegDaAhHQKtzTLkCFK11fZQoaAZHQJ6BmOuJUHZoB03oA2gIR0CrdwytmthedX2UKGgGR0Cdhf55Z8rqaAdN6ANoCEdAq3toMjNY83V9lChoBkdAoKvmnuRcNmgHTegDaAhHQKuBHhZQpF11fZQoaAZHQKAmpIJZ4fRoB03oA2gIR0CrgbxmK64EdX2UKGgGR0CgHKYx+KCQaAdN6ANoCEdAq4fXFDOTq3V9lChoBkdAm76eTeO4omgHTegDaAhHQKuMy4ACGN91fZQoaAZHQJ7c0GGEf1ZoB03oA2gIR0CrkKMmfGuLdX2UKGgGR0CejvRb8m8eaAdN6ANoCEdAq5D4HxBmgHV9lChoBkdAkf2QKKHfuWgHTegDaAhHQKuUznbqQil1fZQoaAZHQJsOgRaouPFoB03oA2gIR0CrmSlyq+8HdX2UKGgGR0CWkt31BdD6aAdN6ANoCEdAq502tuDSPXV9lChoBkdAnrlEh3aBZ2gHTegDaAhHQKudrU8V58l1fZQoaAZHQJ7VBeNT989oB03oA2gIR0Cro4IP07KadX2UKGgGR0Cc/58P4EfUaAdN6ANoCEdAq6mU690zTHV9lChoBkdAnEFcXvYvnWgHTegDaAhHQKutZXEIgNh1fZQoaAZHQJ8brvG6wt9oB03oA2gIR0Crrb9l2/zrdX2UKGgGR0Cea6pdKNADaAdN6ANoCEdAq7GG3fAKv3V9lChoBkdAn/Uj19ORDGgHTegDaAhHQKu1qWqLjxV1fZQoaAZHQKAP6jO9nK5oB03oA2gIR0CruW/qPfbcdX2UKGgGR0Cevm938n/laAdN6ANoCEdAq7nFP557gXV9lChoBkdAn1A6L4vexmgHTegDaAhHQKu+GifQKKJ1fZQoaAZHQJomBq7AcktoB03oA2gIR0CrxKfWlMyrdX2UKGgGR0Cfp6LAHmihaAdN6ANoCEdAq8pGDDjzZ3V9lChoBkdAoFeKuW8h92gHTegDaAhHQKvKowJw84h1fZQoaAZHQJ2WgaIeo1loB03oA2gIR0Crzny/j81odX2UKGgGR0Cd0WQ4jrzHaAdN6ANoCEdAq9K1QQ+UyHV9lChoBkdAoHhNTHbRGGgHTegDaAhHQKvWiAoXsPd1fZQoaAZHQJ6m1lf7aZhoB03oA2gIR0Cr1ucpLEk0dX2UKGgGR0Cd2edkrf+CaAdN6ANoCEdAq9q1qi48U3V9lChoBkdAmV8k6gdwN2gHTegDaAhHQKvgJnM+u/11fZQoaAZHQIT0IHqu8sdoB03oA2gIR0Cr5nE/jbSJdX2UKGgGR0CaVHMyJsO5aAdN6ANoCEdAq+cILkS26XV9lChoBkdAoOmJ/wy6+WgHTegDaAhHQKvrU5nUUfx1fZQoaAZHQKB8rmrbQC1oB03oA2gIR0Cr74oddVvNdX2UKGgGR0Cek4lvqC6IaAdN6ANoCEdAq/NDxwyZa3V9lChoBkdAnJSgco6S1WgHTegDaAhHQKvzm53C9AZ1fZQoaAZHQJ6CjR8c+7loB03oA2gIR0Cr916Jyhi9dX2UKGgGR0CduVuwHJLeaAdN6ANoCEdAq/uaX4TK1XV9lChoBkdAnnopXdTHbWgHTegDaAhHQKwBh4fwI+p1fZQoaAZHQJ5zojkdWABoB03oA2gIR0CsAhG3F1jidX2UKGgGR0CdAl7o0Q9SaAdN6ANoCEdArAhGCEpRXXV9lChoBkdAnkkWw7kn1GgHTegDaAhHQKwMseHSF491fZQoaAZHQJjL5rFfiP1oB03oA2gIR0CsEJsQmNR4dX2UKGgGR0CPTQS/0ulHaAdN6ANoCEdArBD143WFvnV9lChoBkdAmg0ZB9kSVWgHTegDaAhHQKwUwkleF+N1fZQoaAZHQJyI00SAYpFoB03oA2gIR0CsGPkAggX/dX2UKGgGR0CbeXTWXkYGaAdN6ANoCEdArBz4FotcwHV9lChoBkdAnxPTa9K28mgHTegDaAhHQKwdghr30wt1fZQoaAZHQJ1IrdvbXYloB03oA2gIR0CsI2lrEcbSdX2UKGgGR0CUe0ZFocrBaAdN6ANoCEdArCmOA5JbuHV9lChoBkdAnqajZUT+N2gHTegDaAhHQKwtXqSowVV1fZQoaAZHQJzIxYEGJN1oB03oA2gIR0CsLbgLZzxPdX2UKGgGR0CPEwaH9FWoaAdN6ANoCEdArDGFT72tdXV9lChoBkdAnXGkuQIUrWgHTegDaAhHQKw1v0h/y5J1fZQoaAZHQJ6hB1ZDArRoB03oA2gIR0CsOYIysS00dX2UKGgGR0CepuFSsKb8aAdN6ANoCEdArDneHFglW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c46efba3d220e58b27258e9737e089e669cdf1d3cf35dc9bb0c795cfea2347
3
+ size 1097707
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2063.22736963178, "std_reward": 65.90633507571292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T14:04:54.747819"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4b503eef7996b115074d830bacc0fb26cd2f9798a750fe686c6987dc5c571bb
3
+ size 2170