added tutorials
Browse files- Tutorials/0_Embeddings.ipynb +257 -0
- Tutorials/1_Fill-Mask.ipynb +427 -0
Tutorials/0_Embeddings.ipynb
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "274e6135-2d97-4244-9183-65bcb1d24c80",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# Use the trained astroBERT model to generate embedings of text\n",
|
11 |
+
"# to be used for downstream tasks"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"id": "2cc88ed3-6f52-49a2-99c0-344387758ab5",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"# Tutorial 0: Loading astroBERT to produce text embeddings\n",
|
20 |
+
"This tutorial will show you how to load astroBERT and produce text embeddings that can be used on downstream tasks."
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"id": "9e65c041-9d66-4fb1-96b9-4937000da02e",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"# 1 - load models and tokenizer"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
+
"id": "67d99e96-c532-49ef-8542-a48eef818956",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"name": "stderr",
|
41 |
+
"output_type": "stream",
|
42 |
+
"text": [
|
43 |
+
"2022-10-17 12:10:19.355203: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
|
44 |
+
]
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"source": [
|
48 |
+
"from transformers import AutoTokenizer, AutoModel"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 4,
|
54 |
+
"id": "00e1d48e-9898-44ef-b00e-43e3ab7fed7d",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"# the model path can either be the name of the Huggingface repository\n",
|
59 |
+
"remote_model_path = 'adsabs/astroBERT'\n",
|
60 |
+
"# or the local path to the directory containing model weight and tokenizer vocab\n",
|
61 |
+
"local_model_path = '../'"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 5,
|
67 |
+
"id": "9bcc6009-6009-463f-a7da-f010c5fae27e",
|
68 |
+
"metadata": {},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"# make sure you load the tokenier with do_lower_case=False\n",
|
72 |
+
"astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
|
73 |
+
" use_auth_token=True,\n",
|
74 |
+
" add_special_tokens=True,\n",
|
75 |
+
" do_lower_case=False,\n",
|
76 |
+
" )"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 6,
|
82 |
+
"id": "dbd144f0-6038-4917-94b0-aea9da72cac5",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"data": {
|
87 |
+
"text/plain": [
|
88 |
+
"PreTrainedTokenizerFast(name_or_path='adsabs/astroBERT', vocab_size=30000, model_max_len=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'})"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"execution_count": 6,
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "execute_result"
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"source": [
|
97 |
+
"astroBERT_tokenizer"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 7,
|
103 |
+
"id": "dd9a9257-cbe4-4908-a9f4-8e1431dc375a",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [
|
106 |
+
{
|
107 |
+
"name": "stderr",
|
108 |
+
"output_type": "stream",
|
109 |
+
"text": [
|
110 |
+
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight']\n",
|
111 |
+
"- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
112 |
+
"- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
113 |
+
]
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"# automodels: defaults to BertModel\n",
|
118 |
+
"# it's normal to get warnings as a BertModel will not load the weights used for PreTraining\n",
|
119 |
+
"astroBERT_automodel = AutoModel.from_pretrained(remote_model_path, \n",
|
120 |
+
" use_auth_token=True,\n",
|
121 |
+
" )"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 8,
|
127 |
+
"id": "572ddd38-a0dc-4583-a5a6-c4f3b2cb2553",
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"# 2 - make some inference, the outputs are the embeddings"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 9,
|
137 |
+
"id": "32fc0b97-4a2d-42ab-aa83-f5d8b39672b1",
|
138 |
+
"metadata": {},
|
139 |
+
"outputs": [
|
140 |
+
{
|
141 |
+
"name": "stdout",
|
142 |
+
"output_type": "stream",
|
143 |
+
"text": [
|
144 |
+
"torch.Size([3, 54])\n"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"# list of strings for which we want embeddings\n",
|
150 |
+
"strings = ['The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space Shuttle Columbia during STS-93 by NASA on July 23, 1999.',\n",
|
151 |
+
" 'Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which appears to homogeneously permeate all of space.',\n",
|
152 |
+
" 'This work has been developed in the framework of the ‘Darklight’ programme, supported by the European Research Council through an Advanced Research Grant to LG (Project # 291521).'\n",
|
153 |
+
" ]\n",
|
154 |
+
"\n",
|
155 |
+
"# tokenizer the strings, with padding (needed to process multiple strings efficiently)\n",
|
156 |
+
"inputs = astroBERT_tokenizer(strings, \n",
|
157 |
+
" padding=True, \n",
|
158 |
+
" return_tensors='pt'\n",
|
159 |
+
" )\n",
|
160 |
+
"\n",
|
161 |
+
"# check the shape of the inputs\n",
|
162 |
+
"print(inputs['input_ids'].shape)"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": 10,
|
168 |
+
"id": "8b7c9456-573a-48e7-9bc2-839fcc25631d",
|
169 |
+
"metadata": {},
|
170 |
+
"outputs": [],
|
171 |
+
"source": [
|
172 |
+
"# pass the inputs through astroBERT\n",
|
173 |
+
"import torch\n",
|
174 |
+
"# no need for gradients, since we are only doing inference\n",
|
175 |
+
"with torch.no_grad():\n",
|
176 |
+
" output = astroBERT_automodel(**inputs, \n",
|
177 |
+
" output_hidden_states=False\n",
|
178 |
+
" ) "
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": 11,
|
184 |
+
"id": "116de57a-bb31-48d7-9556-64e01a16d56f",
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [
|
187 |
+
{
|
188 |
+
"name": "stdout",
|
189 |
+
"output_type": "stream",
|
190 |
+
"text": [
|
191 |
+
"torch.Size([3, 54, 768])\n"
|
192 |
+
]
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
"# BertModel outputs two tensors: last_hidden_state (our embeddings) and pooler_output (to be discarded as it's not meaningful)\n",
|
197 |
+
"# see https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel.forward\n",
|
198 |
+
"# embeddings will have shape = (# of strings, size of tokenized strings(padded), 768 (BERT embedding size))\n",
|
199 |
+
"embeddings = output[0]\n",
|
200 |
+
"print(embeddings.shape)"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 12,
|
206 |
+
"id": "38e45291-6fd7-48cf-83df-e1cc5c8a699f",
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [
|
209 |
+
{
|
210 |
+
"name": "stdout",
|
211 |
+
"output_type": "stream",
|
212 |
+
"text": [
|
213 |
+
"tensor([[ 0.5546, 0.9121, 0.6550, ..., -0.1925, 0.7077, -0.2405],\n",
|
214 |
+
" [ 0.6252, 0.3175, 1.0899, ..., 0.0576, 0.0529, 0.0603],\n",
|
215 |
+
" [ 0.1803, -0.4567, 1.2688, ..., 0.6026, -0.5718, -0.2060],\n",
|
216 |
+
" ...,\n",
|
217 |
+
" [-0.4397, -0.5334, 1.1682, ..., 0.9541, 0.4046, -0.4756],\n",
|
218 |
+
" [-0.3911, 0.7793, 0.2432, ..., 0.2268, -1.0489, -1.4864],\n",
|
219 |
+
" [-0.4529, -0.7346, 0.0675, ..., -0.3246, -0.2333, -0.6154]])\n"
|
220 |
+
]
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"print(embeddings[0])"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
230 |
+
"id": "26acf89f-b7fc-4872-ac81-0ee65030b465",
|
231 |
+
"metadata": {},
|
232 |
+
"outputs": [],
|
233 |
+
"source": []
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"metadata": {
|
237 |
+
"kernelspec": {
|
238 |
+
"display_name": "Python 3 (ipykernel)",
|
239 |
+
"language": "python",
|
240 |
+
"name": "python3"
|
241 |
+
},
|
242 |
+
"language_info": {
|
243 |
+
"codemirror_mode": {
|
244 |
+
"name": "ipython",
|
245 |
+
"version": 3
|
246 |
+
},
|
247 |
+
"file_extension": ".py",
|
248 |
+
"mimetype": "text/x-python",
|
249 |
+
"name": "python",
|
250 |
+
"nbconvert_exporter": "python",
|
251 |
+
"pygments_lexer": "ipython3",
|
252 |
+
"version": "3.8.5"
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"nbformat": 4,
|
256 |
+
"nbformat_minor": 5
|
257 |
+
}
|
Tutorials/1_Fill-Mask.ipynb
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "33df4373-a37b-4fd0-bc67-c297812871e4",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# Use the trained astroBERT model with the fill-mask pipeline"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"id": "164ee9bd-27f9-40a4-8461-3ce12fc928b0",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"# Tutorial 1: using astroBERT with the fill-mask pipeline"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"id": "59429414-f07e-45e5-8825-6fc6a8d26653",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"# 1 - load models and tokenizer"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"id": "db8ee724-6a2a-4ea5-820e-5e2aa0a0f622",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"2022-10-14 15:27:35.809315: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"from transformers import AutoTokenizer, BertForMaskedLM"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 4,
|
52 |
+
"id": "9a98fb63-0793-4684-a202-931cad17c7ca",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"# the model path can either be the name of the Huggingface repository\n",
|
57 |
+
"remote_model_path = 'adsabs/astroBERT'\n",
|
58 |
+
"# or the local path to the directory containing model weight and tokenizer vocab\n",
|
59 |
+
"local_model_path = '../'"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 5,
|
65 |
+
"id": "25fedd16-283b-4817-9b19-2a5ff1c5ba88",
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"# make sure you load the tokenier with do_lower_case=False\n",
|
70 |
+
"astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
|
71 |
+
" use_auth_token=True,\n",
|
72 |
+
" add_special_tokens=False,\n",
|
73 |
+
" do_lower_case=False,\n",
|
74 |
+
" )"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 6,
|
80 |
+
"id": "fb10db03-a5f0-44f7-8d41-0285f898a90d",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"name": "stderr",
|
85 |
+
"output_type": "stream",
|
86 |
+
"text": [
|
87 |
+
"Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertForMaskedLM: ['cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
|
88 |
+
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
89 |
+
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
90 |
+
]
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"astroBERT_automodel_for_mlm = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path=remote_model_path, \n",
|
95 |
+
" use_auth_token=True,\n",
|
96 |
+
" )"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 7,
|
102 |
+
"id": "e8b9b073-3876-4d0b-b8b2-e46fa25c76f0",
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"# for pipeline to work you have to ensure that the model returns a dict\n",
|
107 |
+
"astroBERT_automodel_for_mlm.config.return_dict=True"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 8,
|
113 |
+
"id": "94338f6f-3467-4696-bf7d-f41a12eb889d",
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [],
|
116 |
+
"source": [
|
117 |
+
"from transformers import FillMaskPipeline"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 9,
|
123 |
+
"id": "7b980d9f-4d86-4b54-9324-d57dd9b4b64f",
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"astroBERT_pipeline = FillMaskPipeline(model=astroBERT_automodel_for_mlm,\n",
|
128 |
+
" tokenizer=astroBERT_tokenizer,\n",
|
129 |
+
" task='fill-mask',\n",
|
130 |
+
" )"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": 10,
|
136 |
+
"id": "5cb4d27b-ee3c-4ac7-ace2-4cc57ea9ce7a",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [],
|
139 |
+
"source": [
|
140 |
+
"clean_sentences = ['M67 is one of the most studied open clusters.',\n",
|
141 |
+
"'A solar twin is a star with atmospheric parameters and chemical composition very similar to our Sun.',\n",
|
142 |
+
"'The dynamical evolution of planets close to their star is affected by tidal effects',\n",
|
143 |
+
"'The Kepler satellite collected high-precision long-term and continuous light curves for more than 100,000 solar-type stars',\n",
|
144 |
+
"'The Local Group is composed of the Milky Way, the Andromeda Galaxy, and numerous smaller satellite galaxies.',\n",
|
145 |
+
"'Cepheid variables are used to determine the distances to galaxies in the local universe.',\n",
|
146 |
+
"'Jets are created and sustained by accretion of matter onto a compact massive object.',\n",
|
147 |
+
"'A single star of one solar mass will evolve into a white dwarf.',\n",
|
148 |
+
"'The Very Large Array observes the sky at radio wavelengths.',\n",
|
149 |
+
"'Elements heavier than iron are generated in supernovae explosions.',\n",
|
150 |
+
"'Spitzer was the first spacecraft to fly in an Earth-trailing orbit.',\n",
|
151 |
+
"'Galaxy mergers can occur when two (or more) galaxies collide',\n",
|
152 |
+
"'Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
|
153 |
+
"'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the universe.',\n",
|
154 |
+
"'The Local Group of galaxies is pulled toward The Great Attractor.',\n",
|
155 |
+
"'The Moon is the only satellite of the Earth.',\n",
|
156 |
+
"'Galaxies are categorized according to their visual morphology as elliptical, spiral, or irregular.',\n",
|
157 |
+
"'Stars are made mostly of hydrogen.',\n",
|
158 |
+
"'Comet tails are created as comets approach the Sun.',\n",
|
159 |
+
"'Pluto is a dwarf planet in the Kuiper Belt.',\n",
|
160 |
+
"'The Large and Small Magellanic Clouds are irregular dwarf galaxies and are two satellite galaxies of the Milky Way.',\n",
|
161 |
+
"'The Milky Way has a supermassive black hole, Sagittarius A*, at its center.',\n",
|
162 |
+
"'Andromeda is the nearest large galaxy to the Milky Way and is roughly its equal in mass.',\n",
|
163 |
+
"'The interstellar medium is the gas and dust between stars.']"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": 11,
|
169 |
+
"id": "9f3a6fdc-182f-4edb-8ef4-7e4253c2d4db",
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [],
|
172 |
+
"source": [
|
173 |
+
"masked_sentences = ['M67 is one of the most studied [MASK] clusters.',\n",
|
174 |
+
"'A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.',\n",
|
175 |
+
"'The dynamical evolution of planets close to their star is affected by [MASK] effects',\n",
|
176 |
+
"'The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars',\n",
|
177 |
+
"'The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.',\n",
|
178 |
+
"'Cepheid variables are used to determine the [MASK] to galaxies in the local universe.',\n",
|
179 |
+
"'Jets are created and sustained by [MASK] of matter onto a compact massive object.',\n",
|
180 |
+
"'A single star of one solar mass will evolve into a [MASK] dwarf.',\n",
|
181 |
+
"'The Very Large Array observes the sky at [MASK] wavelengths.',\n",
|
182 |
+
"'Elements heavier than [MASK] are generated in supernovae explosions.',\n",
|
183 |
+
"'Spitzer was the first [MASK] to fly in an Earth-trailing orbit.',\n",
|
184 |
+
"'Galaxy [MASK] can occur when two (or more) galaxies collide',\n",
|
185 |
+
"'Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.',\n",
|
186 |
+
"'The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK].',\n",
|
187 |
+
"'The Local Group of galaxies is pulled toward The Great [MASK].',\n",
|
188 |
+
"'The Moon is the only [MASK] of the Earth.',\n",
|
189 |
+
"'Galaxies are categorized according to their visual morphology as [MASK], spiral, or irregular.',\n",
|
190 |
+
"'Stars are made mostly of [MASK].',\n",
|
191 |
+
"'Comet tails are created as comets approach the [MASK].',\n",
|
192 |
+
"'Pluto is a dwarf [MASK] in the Kuiper Belt.',\n",
|
193 |
+
"'The Large and Small Magellanic Clouds are irregular [MASK] galaxies and are two satellite galaxies of the Milky Way.',\n",
|
194 |
+
"'The Milky Way has a [MASK] black hole, Sagittarius A*, at its center.',\n",
|
195 |
+
"'Andromeda is the nearest large [MASK] to the Milky Way and is roughly its equal in mass.',\n",
|
196 |
+
"'The [MASK] medium is the gas and dust between stars.']"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 12,
|
202 |
+
"id": "d4c729ad-89f4-4e70-b433-a65b6035c10b",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"masked_words = [x for s1,s2 in zip(clean_sentences, masked_sentences) \n",
|
207 |
+
" for x,y in zip(s1.split(), s2.split()) if y=='[MASK]']"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": 13,
|
213 |
+
"id": "2958cfea-f6cf-4d45-9e15-84a5fae7f3cb",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [
|
216 |
+
{
|
217 |
+
"data": {
|
218 |
+
"text/plain": [
|
219 |
+
"['open',\n",
|
220 |
+
" 'atmospheric',\n",
|
221 |
+
" 'tidal',\n",
|
222 |
+
" 'curves',\n",
|
223 |
+
" 'Andromeda',\n",
|
224 |
+
" 'distances',\n",
|
225 |
+
" 'accretion',\n",
|
226 |
+
" 'white',\n",
|
227 |
+
" 'radio',\n",
|
228 |
+
" 'iron',\n",
|
229 |
+
" 'spacecraft',\n",
|
230 |
+
" 'mergers',\n",
|
231 |
+
" 'matter',\n",
|
232 |
+
" 'satellite',\n",
|
233 |
+
" 'planet',\n",
|
234 |
+
" 'dwarf',\n",
|
235 |
+
" 'supermassive',\n",
|
236 |
+
" 'galaxy',\n",
|
237 |
+
" 'interstellar']"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
"execution_count": 13,
|
241 |
+
"metadata": {},
|
242 |
+
"output_type": "execute_result"
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"masked_words"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 14,
|
252 |
+
"id": "2a07a641-61a7-42dd-b70e-62eb97ad4e4b",
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"results = astroBERT_pipeline(inputs=masked_sentences, \n",
|
257 |
+
" top_k=3\n",
|
258 |
+
" )"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": 15,
|
264 |
+
"id": "ec2880d9-a8ad-4919-ab5b-732f3bcc21ae",
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"name": "stdout",
|
269 |
+
"output_type": "stream",
|
270 |
+
"text": [
|
271 |
+
"M67 is one of the most studied [MASK] clusters.\n",
|
272 |
+
"original: open\n",
|
273 |
+
"\t open 0.87\n",
|
274 |
+
"\t globular 0.07\n",
|
275 |
+
"\t star 0.03\n",
|
276 |
+
"\n",
|
277 |
+
"A solar twin is a star with [MASK] parameters and chemical composition very similar to our Sun.\n",
|
278 |
+
"original: atmospheric\n",
|
279 |
+
"\t fundamental 0.56\n",
|
280 |
+
"\t physical 0.25\n",
|
281 |
+
"\t stellar 0.05\n",
|
282 |
+
"\n",
|
283 |
+
"The dynamical evolution of planets close to their star is affected by [MASK] effects\n",
|
284 |
+
"original: tidal\n",
|
285 |
+
"\t tidal 0.07\n",
|
286 |
+
"\t electromagnetic 0.05\n",
|
287 |
+
"\t electrostatic 0.04\n",
|
288 |
+
"\n",
|
289 |
+
"The Kepler satellite collected high-precision long-term and continuous light [MASK] for more than 100,000 solar-type stars\n",
|
290 |
+
"original: curves\n",
|
291 |
+
"\t curves 0.43\n",
|
292 |
+
"\t ##s 0.04\n",
|
293 |
+
"\t conditions 0.04\n",
|
294 |
+
"\n",
|
295 |
+
"The Local Group is composed of the Milky Way, the [MASK] Galaxy, and numerous smaller satellite galaxies.\n",
|
296 |
+
"original: Andromeda\n",
|
297 |
+
"\t Andromeda 0.99\n",
|
298 |
+
"\t M31 0.00\n",
|
299 |
+
"\t Sagittarius 0.00\n",
|
300 |
+
"\n",
|
301 |
+
"Cepheid variables are used to determine the [MASK] to galaxies in the local universe.\n",
|
302 |
+
"original: distances\n",
|
303 |
+
"\t distances 0.79\n",
|
304 |
+
"\t distance 0.21\n",
|
305 |
+
"\t redshifts 0.00\n",
|
306 |
+
"\n",
|
307 |
+
"Jets are created and sustained by [MASK] of matter onto a compact massive object.\n",
|
308 |
+
"original: accretion\n",
|
309 |
+
"\t accretion 0.79\n",
|
310 |
+
"\t infall 0.13\n",
|
311 |
+
"\t fall 0.02\n",
|
312 |
+
"\n",
|
313 |
+
"A single star of one solar mass will evolve into a [MASK] dwarf.\n",
|
314 |
+
"original: white\n",
|
315 |
+
"\t white 0.77\n",
|
316 |
+
"\t brown 0.19\n",
|
317 |
+
"\t red 0.02\n",
|
318 |
+
"\n",
|
319 |
+
"The Very Large Array observes the sky at [MASK] wavelengths.\n",
|
320 |
+
"original: radio\n",
|
321 |
+
"\t radio 0.29\n",
|
322 |
+
"\t centimeter 0.10\n",
|
323 |
+
"\t all 0.09\n",
|
324 |
+
"\n",
|
325 |
+
"Elements heavier than [MASK] are generated in supernovae explosions.\n",
|
326 |
+
"original: iron\n",
|
327 |
+
"\t iron 0.34\n",
|
328 |
+
"\t helium 0.16\n",
|
329 |
+
"\t oxygen 0.07\n",
|
330 |
+
"\n",
|
331 |
+
"Spitzer was the first [MASK] to fly in an Earth-trailing orbit.\n",
|
332 |
+
"original: spacecraft\n",
|
333 |
+
"\t satellite 0.42\n",
|
334 |
+
"\t spacecraft 0.20\n",
|
335 |
+
"\t observatory 0.16\n",
|
336 |
+
"\n",
|
337 |
+
"Galaxy [MASK] can occur when two (or more) galaxies collide\n",
|
338 |
+
"original: mergers\n",
|
339 |
+
"\t . 0.26\n",
|
340 |
+
"\t A 0.05\n",
|
341 |
+
"\t 1 0.04\n",
|
342 |
+
"\n",
|
343 |
+
"Dark [MASK] is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe.\n",
|
344 |
+
"original: matter\n",
|
345 |
+
"\t energy 0.64\n",
|
346 |
+
"\t Energy 0.24\n",
|
347 |
+
"\t matter 0.10\n",
|
348 |
+
"\n",
|
349 |
+
"The cosmic microwave background (CMB, CMBR), in Big Bang cosmology, is electromagnetic radiation which is a remnant from an early stage of the [MASK].\n",
|
350 |
+
"original: satellite\n",
|
351 |
+
"\t universe 0.45\n",
|
352 |
+
"\t Universe 0.26\n",
|
353 |
+
"\t expansion 0.09\n",
|
354 |
+
"\n",
|
355 |
+
"The Local Group of galaxies is pulled toward The Great [MASK].\n",
|
356 |
+
"original: planet\n",
|
357 |
+
"\t Wall 0.96\n",
|
358 |
+
"\t East 0.01\n",
|
359 |
+
"\t Planet 0.00\n",
|
360 |
+
"\n",
|
361 |
+
"The Moon is the only [MASK] of the Earth.\n",
|
362 |
+
"original: dwarf\n",
|
363 |
+
"\t satellite 0.38\n",
|
364 |
+
"\t moon 0.31\n",
|
365 |
+
"\t constituent 0.07\n",
|
366 |
+
"\n",
|
367 |
+
"Galaxies are categorized according to their visual morphology as [MASK], spiral, or irregular.\n",
|
368 |
+
"original: supermassive\n",
|
369 |
+
"\t elliptical 0.92\n",
|
370 |
+
"\t spheroidal 0.02\n",
|
371 |
+
"\t irregular 0.01\n",
|
372 |
+
"\n",
|
373 |
+
"Stars are made mostly of [MASK].\n",
|
374 |
+
"original: galaxy\n",
|
375 |
+
"\t hydrogen 0.20\n",
|
376 |
+
"\t helium 0.14\n",
|
377 |
+
"\t carbon 0.12\n",
|
378 |
+
"\n",
|
379 |
+
"Comet tails are created as comets approach the [MASK].\n",
|
380 |
+
"original: interstellar\n",
|
381 |
+
"\t Sun 0.45\n",
|
382 |
+
"\t sun 0.23\n",
|
383 |
+
"\t Earth 0.19\n",
|
384 |
+
"\n"
|
385 |
+
]
|
386 |
+
}
|
387 |
+
],
|
388 |
+
"source": [
|
389 |
+
"for w, s, rs in zip(masked_words, masked_sentences,results):\n",
|
390 |
+
" print(s)\n",
|
391 |
+
" print('original: {}'.format(w))\n",
|
392 |
+
" for r in rs:\n",
|
393 |
+
" print('\\t {} {:0.2f}'.format(r['token_str'], r['score']))\n",
|
394 |
+
" print()"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"execution_count": null,
|
400 |
+
"id": "e03b19d6-66cd-4eba-8ddb-6924011037e7",
|
401 |
+
"metadata": {},
|
402 |
+
"outputs": [],
|
403 |
+
"source": []
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"metadata": {
|
407 |
+
"kernelspec": {
|
408 |
+
"display_name": "Python 3 (ipykernel)",
|
409 |
+
"language": "python",
|
410 |
+
"name": "python3"
|
411 |
+
},
|
412 |
+
"language_info": {
|
413 |
+
"codemirror_mode": {
|
414 |
+
"name": "ipython",
|
415 |
+
"version": 3
|
416 |
+
},
|
417 |
+
"file_extension": ".py",
|
418 |
+
"mimetype": "text/x-python",
|
419 |
+
"name": "python",
|
420 |
+
"nbconvert_exporter": "python",
|
421 |
+
"pygments_lexer": "ipython3",
|
422 |
+
"version": "3.8.5"
|
423 |
+
}
|
424 |
+
},
|
425 |
+
"nbformat": 4,
|
426 |
+
"nbformat_minor": 5
|
427 |
+
}
|