adsjnajefwnb commited on
Commit
b54b8e8
·
verified ·
1 Parent(s): 7121e9d

End of training

Browse files
README.md CHANGED
@@ -1,199 +1,81 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b0
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-segments-sidewalk-oct-22
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-segments-sidewalk-oct-22
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the adsjnajefwnb/di dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1425
22
+ - Mean Iou: 0.4608
23
+ - Mean Accuracy: 0.6144
24
+ - Overall Accuracy: 0.9524
25
+ - Accuracy Unlabeled: nan
26
+ - Accuracy Anqvan: nan
27
+ - Accuracy Baohuxiang: nan
28
+ - Accuracy Biaozhi: nan
29
+ - Accuracy Dianlan: 0.9591
30
+ - Accuracy Miehuoqi: 0.8841
31
+ - Accuracy Zhaoming: 0.0
32
+ - Iou Unlabeled: 0.0
33
+ - Iou Anqvan: nan
34
+ - Iou Baohuxiang: nan
35
+ - Iou Biaozhi: nan
36
+ - Iou Dianlan: 0.9591
37
+ - Iou Miehuoqi: 0.8841
38
+ - Iou Zhaoming: 0.0
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 6e-05
58
+ - train_batch_size: 2
59
+ - eval_batch_size: 2
60
+ - seed: 42
61
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 50
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Anqvan | Accuracy Baohuxiang | Accuracy Biaozhi | Accuracy Dianlan | Accuracy Miehuoqi | Accuracy Zhaoming | Iou Unlabeled | Iou Anqvan | Iou Baohuxiang | Iou Biaozhi | Iou Dianlan | Iou Miehuoqi | Iou Zhaoming |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:----------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:----------:|:--------------:|:-----------:|:-----------:|:------------:|:------------:|
69
+ | 1.5348 | 10.0 | 20 | 1.8080 | 0.3181 | 0.6370 | 0.9720 | nan | nan | nan | nan | 0.9776 | 0.9334 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.9759 | 0.9328 | 0.0 |
70
+ | 1.5003 | 20.0 | 40 | 1.5287 | 0.3865 | 0.6442 | 0.9726 | nan | nan | nan | nan | 0.9773 | 0.9552 | 0.0 | 0.0 | nan | nan | 0.0 | 0.9773 | 0.9552 | 0.0 |
71
+ | 1.4909 | 30.0 | 60 | 1.2543 | 0.4770 | 0.6359 | 0.9695 | nan | nan | nan | nan | 0.9750 | 0.9328 | 0.0 | 0.0 | nan | nan | nan | 0.9750 | 0.9328 | 0.0 |
72
+ | 1.331 | 40.0 | 80 | 1.1463 | 0.4671 | 0.6229 | 0.9613 | nan | nan | nan | nan | 0.9677 | 0.9009 | 0.0 | 0.0 | nan | nan | nan | 0.9677 | 0.9009 | 0.0 |
73
+ | 1.0843 | 50.0 | 100 | 1.1425 | 0.4608 | 0.6144 | 0.9524 | nan | nan | nan | nan | 0.9591 | 0.8841 | 0.0 | 0.0 | nan | nan | nan | 0.9591 | 0.8841 | 0.0 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.46.3
79
+ - Pytorch 1.12.1+cu113
80
+ - Datasets 3.1.0
81
+ - Tokenizers 0.20.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "anqvan",
33
+ "2": "baohuxiang",
34
+ "3": "biaozhi",
35
+ "4": "dianlan",
36
+ "5": "miehuoqi",
37
+ "6": "zhaoming"
38
+ },
39
+ "image_size": 224,
40
+ "initializer_range": 0.02,
41
+ "label2id": {
42
+ "anqvan": 1,
43
+ "baohuxiang": 2,
44
+ "biaozhi": 3,
45
+ "dianlan": 4,
46
+ "miehuoqi": 5,
47
+ "unlabeled": 0,
48
+ "zhaoming": 6
49
+ },
50
+ "layer_norm_eps": 1e-06,
51
+ "mlp_ratios": [
52
+ 4,
53
+ 4,
54
+ 4,
55
+ 4
56
+ ],
57
+ "model_type": "segformer",
58
+ "num_attention_heads": [
59
+ 1,
60
+ 2,
61
+ 5,
62
+ 8
63
+ ],
64
+ "num_channels": 3,
65
+ "num_encoder_blocks": 4,
66
+ "patch_sizes": [
67
+ 7,
68
+ 3,
69
+ 3,
70
+ 3
71
+ ],
72
+ "reshape_last_stage": true,
73
+ "semantic_loss_ignore_index": 255,
74
+ "sr_ratios": [
75
+ 8,
76
+ 4,
77
+ 2,
78
+ 1
79
+ ],
80
+ "strides": [
81
+ 4,
82
+ 2,
83
+ 2,
84
+ 2
85
+ ],
86
+ "torch_dtype": "float32",
87
+ "transformers_version": "4.46.3"
88
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51ac5584aa2a436b8f9aa45c24ea8a7aa7663956b320021f712ddd3cedccdee0
3
+ size 14889924
runs/Jan10_18-17-41_lzc/events.out.tfevents.1736504290.lzc.67392.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aeda9ebe30f91a4cf0d23de53c026102b3e07e5541da1756847f5d762942d93
3
+ size 33044
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94cb2d65a4a4f446b350687e9a4f1300a7c3d1fc3165615858f77d06fa2c855d
3
+ size 4911