adsjnajefwnb
commited on
End of training
Browse files- README.md +81 -199
- config.json +88 -0
- model.safetensors +3 -0
- runs/Jan10_18-17-41_lzc/events.out.tfevents.1736504290.lzc.67392.0 +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,81 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-segments-sidewalk-oct-22
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-segments-sidewalk-oct-22
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the adsjnajefwnb/di dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.1425
|
22 |
+
- Mean Iou: 0.4608
|
23 |
+
- Mean Accuracy: 0.6144
|
24 |
+
- Overall Accuracy: 0.9524
|
25 |
+
- Accuracy Unlabeled: nan
|
26 |
+
- Accuracy Anqvan: nan
|
27 |
+
- Accuracy Baohuxiang: nan
|
28 |
+
- Accuracy Biaozhi: nan
|
29 |
+
- Accuracy Dianlan: 0.9591
|
30 |
+
- Accuracy Miehuoqi: 0.8841
|
31 |
+
- Accuracy Zhaoming: 0.0
|
32 |
+
- Iou Unlabeled: 0.0
|
33 |
+
- Iou Anqvan: nan
|
34 |
+
- Iou Baohuxiang: nan
|
35 |
+
- Iou Biaozhi: nan
|
36 |
+
- Iou Dianlan: 0.9591
|
37 |
+
- Iou Miehuoqi: 0.8841
|
38 |
+
- Iou Zhaoming: 0.0
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 6e-05
|
58 |
+
- train_batch_size: 2
|
59 |
+
- eval_batch_size: 2
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 50
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Anqvan | Accuracy Baohuxiang | Accuracy Biaozhi | Accuracy Dianlan | Accuracy Miehuoqi | Accuracy Zhaoming | Iou Unlabeled | Iou Anqvan | Iou Baohuxiang | Iou Biaozhi | Iou Dianlan | Iou Miehuoqi | Iou Zhaoming |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:----------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:----------:|:--------------:|:-----------:|:-----------:|:------------:|:------------:|
|
69 |
+
| 1.5348 | 10.0 | 20 | 1.8080 | 0.3181 | 0.6370 | 0.9720 | nan | nan | nan | nan | 0.9776 | 0.9334 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.9759 | 0.9328 | 0.0 |
|
70 |
+
| 1.5003 | 20.0 | 40 | 1.5287 | 0.3865 | 0.6442 | 0.9726 | nan | nan | nan | nan | 0.9773 | 0.9552 | 0.0 | 0.0 | nan | nan | 0.0 | 0.9773 | 0.9552 | 0.0 |
|
71 |
+
| 1.4909 | 30.0 | 60 | 1.2543 | 0.4770 | 0.6359 | 0.9695 | nan | nan | nan | nan | 0.9750 | 0.9328 | 0.0 | 0.0 | nan | nan | nan | 0.9750 | 0.9328 | 0.0 |
|
72 |
+
| 1.331 | 40.0 | 80 | 1.1463 | 0.4671 | 0.6229 | 0.9613 | nan | nan | nan | nan | 0.9677 | 0.9009 | 0.0 | 0.0 | nan | nan | nan | 0.9677 | 0.9009 | 0.0 |
|
73 |
+
| 1.0843 | 50.0 | 100 | 1.1425 | 0.4608 | 0.6144 | 0.9524 | nan | nan | nan | nan | 0.9591 | 0.8841 | 0.0 | 0.0 | nan | nan | nan | 0.9591 | 0.8841 | 0.0 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.46.3
|
79 |
+
- Pytorch 1.12.1+cu113
|
80 |
+
- Datasets 3.1.0
|
81 |
+
- Tokenizers 0.20.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "anqvan",
|
33 |
+
"2": "baohuxiang",
|
34 |
+
"3": "biaozhi",
|
35 |
+
"4": "dianlan",
|
36 |
+
"5": "miehuoqi",
|
37 |
+
"6": "zhaoming"
|
38 |
+
},
|
39 |
+
"image_size": 224,
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"label2id": {
|
42 |
+
"anqvan": 1,
|
43 |
+
"baohuxiang": 2,
|
44 |
+
"biaozhi": 3,
|
45 |
+
"dianlan": 4,
|
46 |
+
"miehuoqi": 5,
|
47 |
+
"unlabeled": 0,
|
48 |
+
"zhaoming": 6
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-06,
|
51 |
+
"mlp_ratios": [
|
52 |
+
4,
|
53 |
+
4,
|
54 |
+
4,
|
55 |
+
4
|
56 |
+
],
|
57 |
+
"model_type": "segformer",
|
58 |
+
"num_attention_heads": [
|
59 |
+
1,
|
60 |
+
2,
|
61 |
+
5,
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"num_channels": 3,
|
65 |
+
"num_encoder_blocks": 4,
|
66 |
+
"patch_sizes": [
|
67 |
+
7,
|
68 |
+
3,
|
69 |
+
3,
|
70 |
+
3
|
71 |
+
],
|
72 |
+
"reshape_last_stage": true,
|
73 |
+
"semantic_loss_ignore_index": 255,
|
74 |
+
"sr_ratios": [
|
75 |
+
8,
|
76 |
+
4,
|
77 |
+
2,
|
78 |
+
1
|
79 |
+
],
|
80 |
+
"strides": [
|
81 |
+
4,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
"torch_dtype": "float32",
|
87 |
+
"transformers_version": "4.46.3"
|
88 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51ac5584aa2a436b8f9aa45c24ea8a7aa7663956b320021f712ddd3cedccdee0
|
3 |
+
size 14889924
|
runs/Jan10_18-17-41_lzc/events.out.tfevents.1736504290.lzc.67392.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5aeda9ebe30f91a4cf0d23de53c026102b3e07e5541da1756847f5d762942d93
|
3 |
+
size 33044
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94cb2d65a4a4f446b350687e9a4f1300a7c3d1fc3165615858f77d06fa2c855d
|
3 |
+
size 4911
|