--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the adsjnajefwnb/di dataset. It achieves the following results on the evaluation set: - Loss: 1.1425 - Mean Iou: 0.4608 - Mean Accuracy: 0.6144 - Overall Accuracy: 0.9524 - Accuracy Unlabeled: nan - Accuracy Anqvan: nan - Accuracy Baohuxiang: nan - Accuracy Biaozhi: nan - Accuracy Dianlan: 0.9591 - Accuracy Miehuoqi: 0.8841 - Accuracy Zhaoming: 0.0 - Iou Unlabeled: 0.0 - Iou Anqvan: nan - Iou Baohuxiang: nan - Iou Biaozhi: nan - Iou Dianlan: 0.9591 - Iou Miehuoqi: 0.8841 - Iou Zhaoming: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Anqvan | Accuracy Baohuxiang | Accuracy Biaozhi | Accuracy Dianlan | Accuracy Miehuoqi | Accuracy Zhaoming | Iou Unlabeled | Iou Anqvan | Iou Baohuxiang | Iou Biaozhi | Iou Dianlan | Iou Miehuoqi | Iou Zhaoming | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:----------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:----------:|:--------------:|:-----------:|:-----------:|:------------:|:------------:| | 1.5348 | 10.0 | 20 | 1.8080 | 0.3181 | 0.6370 | 0.9720 | nan | nan | nan | nan | 0.9776 | 0.9334 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.9759 | 0.9328 | 0.0 | | 1.5003 | 20.0 | 40 | 1.5287 | 0.3865 | 0.6442 | 0.9726 | nan | nan | nan | nan | 0.9773 | 0.9552 | 0.0 | 0.0 | nan | nan | 0.0 | 0.9773 | 0.9552 | 0.0 | | 1.4909 | 30.0 | 60 | 1.2543 | 0.4770 | 0.6359 | 0.9695 | nan | nan | nan | nan | 0.9750 | 0.9328 | 0.0 | 0.0 | nan | nan | nan | 0.9750 | 0.9328 | 0.0 | | 1.331 | 40.0 | 80 | 1.1463 | 0.4671 | 0.6229 | 0.9613 | nan | nan | nan | nan | 0.9677 | 0.9009 | 0.0 | 0.0 | nan | nan | nan | 0.9677 | 0.9009 | 0.0 | | 1.0843 | 50.0 | 100 | 1.1425 | 0.4608 | 0.6144 | 0.9524 | nan | nan | nan | nan | 0.9591 | 0.8841 | 0.0 | 0.0 | nan | nan | nan | 0.9591 | 0.8841 | 0.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 1.12.1+cu113 - Datasets 3.1.0 - Tokenizers 0.20.3