File size: 3,127 Bytes
802170d
 
 
 
 
a5bb4d3
802170d
 
 
 
 
 
a5bb4d3
802170d
 
 
a5bb4d3
 
 
 
 
802170d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5bb4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802170d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: CIS6930_DAAGR_T5_Emo
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# CIS6930_DAAGR_T5_Emo

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3253
- Train Accuracy: 0.9647
- Validation Loss: 0.4468
- Validation Accuracy: 0.9495
- Epoch: 19

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.4976     | 0.9412         | 0.4567          | 0.9459              | 0     |
| 0.4359     | 0.9482         | 0.4462          | 0.9474              | 1     |
| 0.4228     | 0.9502         | 0.4406          | 0.9484              | 2     |
| 0.4131     | 0.9517         | 0.4370          | 0.9488              | 3     |
| 0.4050     | 0.9528         | 0.4349          | 0.9493              | 4     |
| 0.3981     | 0.9539         | 0.4335          | 0.9496              | 5     |
| 0.3914     | 0.9548         | 0.4327          | 0.9498              | 6     |
| 0.3851     | 0.9558         | 0.4328          | 0.9500              | 7     |
| 0.3794     | 0.9565         | 0.4328          | 0.9501              | 8     |
| 0.3738     | 0.9574         | 0.4321          | 0.9502              | 9     |
| 0.3685     | 0.9582         | 0.4328          | 0.9502              | 10    |
| 0.3632     | 0.9589         | 0.4340          | 0.9502              | 11    |
| 0.3582     | 0.9597         | 0.4343          | 0.9501              | 12    |
| 0.3531     | 0.9605         | 0.4363          | 0.9501              | 13    |
| 0.3482     | 0.9612         | 0.4381          | 0.9501              | 14    |
| 0.3436     | 0.9619         | 0.4390          | 0.9500              | 15    |
| 0.3391     | 0.9626         | 0.4396          | 0.9500              | 16    |
| 0.3340     | 0.9633         | 0.4438          | 0.9499              | 17    |
| 0.3297     | 0.9640         | 0.4454          | 0.9498              | 18    |
| 0.3253     | 0.9647         | 0.4468          | 0.9495              | 19    |


### Framework versions

- Transformers 4.27.4
- TensorFlow 2.11.0
- Datasets 2.11.0
- Tokenizers 0.13.2