Delete modelling_mimic_cxr_rev_d.py
Browse files- modelling_mimic_cxr_rev_d.py +0 -557
modelling_mimic_cxr_rev_d.py
DELETED
@@ -1,557 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
import os
|
3 |
-
from typing import Optional, Tuple, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import transformers
|
7 |
-
from torch.nn import CrossEntropyLoss, Linear
|
8 |
-
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
9 |
-
from transformers.configuration_utils import PretrainedConfig
|
10 |
-
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
11 |
-
from transformers.modeling_utils import PreTrainedModel
|
12 |
-
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
|
13 |
-
VisionEncoderDecoderConfig,
|
14 |
-
)
|
15 |
-
from transformers.utils import logging
|
16 |
-
|
17 |
-
from modules.transformers.uniformer.modelling_uniformer import (
|
18 |
-
MultiUniFormerWithProjectionHead,
|
19 |
-
)
|
20 |
-
|
21 |
-
logger = logging.get_logger(__name__)
|
22 |
-
|
23 |
-
|
24 |
-
class MIMICCXRMultimodalModel(VisionEncoderDecoderModel):
|
25 |
-
|
26 |
-
config_class = VisionEncoderDecoderConfig
|
27 |
-
base_model_prefix = "vision_encoder_decoder"
|
28 |
-
main_input_name = "pixel_values"
|
29 |
-
supports_gradient_checkpointing = True
|
30 |
-
|
31 |
-
def __init__(
|
32 |
-
self,
|
33 |
-
config: Optional[PretrainedConfig] = None,
|
34 |
-
encoder: Optional[PreTrainedModel] = None,
|
35 |
-
decoder: Optional[PreTrainedModel] = None,
|
36 |
-
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
|
37 |
-
DefaultDecoderClass = transformers.LlamaForCausalLM,
|
38 |
-
):
|
39 |
-
|
40 |
-
if decoder:
|
41 |
-
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
|
42 |
-
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
43 |
-
|
44 |
-
if config is None and (encoder is None or decoder is None):
|
45 |
-
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
46 |
-
if config is None:
|
47 |
-
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
48 |
-
else:
|
49 |
-
if not isinstance(config, self.config_class):
|
50 |
-
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
51 |
-
|
52 |
-
config.tie_word_embeddings = False
|
53 |
-
|
54 |
-
# Initialize with config:
|
55 |
-
PreTrainedModel.__init__(self, config)
|
56 |
-
|
57 |
-
# Encoder:
|
58 |
-
if encoder is None:
|
59 |
-
encoder = DefaultEncoderClass(config=config.encoder)
|
60 |
-
|
61 |
-
# Decoder:
|
62 |
-
if decoder is None:
|
63 |
-
assert not config.decoder.add_cross_attention
|
64 |
-
decoder = DefaultDecoderClass(config=config.decoder)
|
65 |
-
|
66 |
-
self.encoder = encoder
|
67 |
-
self.decoder = decoder
|
68 |
-
|
69 |
-
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
70 |
-
logger.warning(
|
71 |
-
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
72 |
-
f" {self.config.encoder}"
|
73 |
-
)
|
74 |
-
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
75 |
-
logger.warning(
|
76 |
-
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
77 |
-
f" {self.config.decoder}"
|
78 |
-
)
|
79 |
-
|
80 |
-
self.encoder.config = self.config.encoder
|
81 |
-
self.decoder.config = self.config.decoder
|
82 |
-
|
83 |
-
assert config.decoder.is_decoder
|
84 |
-
assert 'img_token_id' in self.decoder.config.__dict__
|
85 |
-
assert 'pad_token_id' in self.decoder.config.__dict__
|
86 |
-
assert 'token_type_embeddings' in self.decoder.config.__dict__
|
87 |
-
|
88 |
-
if self.decoder.config.token_type_embeddings == 'add':
|
89 |
-
self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)
|
90 |
-
|
91 |
-
def forward(
|
92 |
-
self,
|
93 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
94 |
-
decoder_input_ids: Optional[torch.LongTensor] = None,
|
95 |
-
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
96 |
-
decoder_token_type_ids: Optional[torch.LongTensor] = None,
|
97 |
-
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
98 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
99 |
-
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
100 |
-
decoder_position_ids: Optional[torch.LongTensor] = None,
|
101 |
-
labels: Optional[torch.LongTensor] = None,
|
102 |
-
use_cache: Optional[bool] = None,
|
103 |
-
output_attentions: Optional[bool] = None,
|
104 |
-
output_hidden_states: Optional[bool] = None,
|
105 |
-
return_dict: Optional[bool] = None,
|
106 |
-
**kwargs,
|
107 |
-
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
108 |
-
|
109 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
110 |
-
|
111 |
-
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
112 |
-
|
113 |
-
kwargs_decoder = {
|
114 |
-
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
115 |
-
}
|
116 |
-
|
117 |
-
if decoder_inputs_embeds is None:
|
118 |
-
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
|
119 |
-
|
120 |
-
if encoder_outputs is None: # Ths is for when generate() is not called; for generation, see prepare_inputs_for_generation():
|
121 |
-
if pixel_values is None:
|
122 |
-
raise ValueError("You have to specify pixel_values")
|
123 |
-
|
124 |
-
encoder_outputs = self.encoder(
|
125 |
-
pixel_values,
|
126 |
-
output_hidden_states=output_hidden_states,
|
127 |
-
return_dict=return_dict,
|
128 |
-
**kwargs_encoder,
|
129 |
-
) # UniFormer does not support output_attentions.
|
130 |
-
|
131 |
-
assert decoder_inputs_embeds is not None
|
132 |
-
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
|
133 |
-
|
134 |
-
# Add image token type identifiers:
|
135 |
-
decoder_token_type_ids = torch.cat(
|
136 |
-
[
|
137 |
-
torch.full(
|
138 |
-
encoder_outputs[0].shape[:-1],
|
139 |
-
self.decoder.config.img_token_id,
|
140 |
-
dtype=decoder_token_type_ids.dtype,
|
141 |
-
device=decoder_token_type_ids.device,
|
142 |
-
),
|
143 |
-
decoder_token_type_ids
|
144 |
-
],
|
145 |
-
dim=1,
|
146 |
-
)
|
147 |
-
|
148 |
-
# Position identifiers accounting for padding:
|
149 |
-
report_position_ids = decoder_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
150 |
-
report_position_ids.masked_fill_(decoder_attention_mask == 0, 1)
|
151 |
-
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
152 |
-
|
153 |
-
# 4D attention mask:
|
154 |
-
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], decoder_attention_mask)
|
155 |
-
|
156 |
-
assert decoder_position_ids is not None
|
157 |
-
assert decoder_attention_mask is not None
|
158 |
-
assert decoder_token_type_ids is not None
|
159 |
-
|
160 |
-
if self.decoder.config.token_type_embeddings == 'add':
|
161 |
-
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
162 |
-
elif self.decoder.config.token_type_embeddings == 'inbuilt':
|
163 |
-
kwargs_decoder['token_type_ids'] = decoder_token_type_ids
|
164 |
-
|
165 |
-
# Forward:
|
166 |
-
decoder_outputs = self.decoder(
|
167 |
-
inputs_embeds=decoder_inputs_embeds,
|
168 |
-
attention_mask=decoder_attention_mask,
|
169 |
-
position_ids=decoder_position_ids,
|
170 |
-
output_attentions=output_attentions,
|
171 |
-
output_hidden_states=output_hidden_states,
|
172 |
-
use_cache=use_cache,
|
173 |
-
past_key_values=past_key_values,
|
174 |
-
return_dict=return_dict,
|
175 |
-
**kwargs_decoder,
|
176 |
-
)
|
177 |
-
|
178 |
-
# Loss:
|
179 |
-
loss = None
|
180 |
-
if labels is not None:
|
181 |
-
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
182 |
-
loss_fct = CrossEntropyLoss()
|
183 |
-
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
184 |
-
|
185 |
-
if not return_dict:
|
186 |
-
if loss is not None:
|
187 |
-
return (loss,) + decoder_outputs + encoder_outputs
|
188 |
-
else:
|
189 |
-
return decoder_outputs + encoder_outputs
|
190 |
-
|
191 |
-
encoder_hidden_states = encoder_outputs[0]
|
192 |
-
|
193 |
-
return Seq2SeqLMOutput(
|
194 |
-
loss=loss,
|
195 |
-
logits=decoder_outputs.logits,
|
196 |
-
past_key_values=decoder_outputs.past_key_values,
|
197 |
-
decoder_hidden_states=decoder_outputs.hidden_states,
|
198 |
-
decoder_attentions=decoder_outputs.attentions,
|
199 |
-
encoder_last_hidden_state=encoder_hidden_states,
|
200 |
-
)
|
201 |
-
|
202 |
-
def prepare_inputs_for_generation(
|
203 |
-
self,
|
204 |
-
input_ids,
|
205 |
-
special_token_ids,
|
206 |
-
token_type_id_sections=None,
|
207 |
-
past_key_values=None,
|
208 |
-
use_cache=None,
|
209 |
-
encoder_outputs=None,
|
210 |
-
**kwargs,
|
211 |
-
):
|
212 |
-
"""
|
213 |
-
Modification of:
|
214 |
-
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
215 |
-
"""
|
216 |
-
|
217 |
-
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
|
218 |
-
|
219 |
-
if past_key_values is None:
|
220 |
-
|
221 |
-
# 4D attention mask:
|
222 |
-
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], report_attention_mask)
|
223 |
-
|
224 |
-
# Position identifiers accounting for padding:
|
225 |
-
report_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
226 |
-
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
227 |
-
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
228 |
-
|
229 |
-
# `inputs_embeds` are only to be used in the 1st generation step:
|
230 |
-
inputs_embeds = torch.cat([encoder_outputs[0], self.decoder.get_input_embeddings()(input_ids)], dim=1)
|
231 |
-
|
232 |
-
decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, token_type_id_sections)
|
233 |
-
decoder_token_type_ids = torch.cat(
|
234 |
-
[
|
235 |
-
torch.full(
|
236 |
-
encoder_outputs[0].shape[:-1],
|
237 |
-
self.decoder.config.img_token_id,
|
238 |
-
dtype=decoder_token_type_ids.dtype,
|
239 |
-
device=decoder_token_type_ids.device,
|
240 |
-
),
|
241 |
-
decoder_token_type_ids,
|
242 |
-
],
|
243 |
-
dim=1,
|
244 |
-
) # Add image token type identifiers.
|
245 |
-
|
246 |
-
input_dict = {
|
247 |
-
'decoder_input_ids': input_ids,
|
248 |
-
'decoder_inputs_embeds': inputs_embeds,
|
249 |
-
'decoder_token_type_ids': decoder_token_type_ids,
|
250 |
-
}
|
251 |
-
else:
|
252 |
-
|
253 |
-
# 4D attention mask:
|
254 |
-
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(encoder_outputs[1], report_attention_mask)
|
255 |
-
|
256 |
-
# Position identifiers accounting for padding:
|
257 |
-
decoder_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
258 |
-
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
259 |
-
|
260 |
-
# Always place token_ids_to_token_type_ids_past before input_ids = input_ids[:, remove_prefix_length:]:
|
261 |
-
decoder_token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids, token_type_id_sections)
|
262 |
-
decoder_position_ids = decoder_position_ids[:, -1:]
|
263 |
-
|
264 |
-
past_length = past_key_values[0][0].shape[2]
|
265 |
-
|
266 |
-
# Some generation methods only pass the last input ID:
|
267 |
-
if input_ids.shape[1] > past_length:
|
268 |
-
remove_prefix_length = past_length
|
269 |
-
else:
|
270 |
-
# Keep only the final ID:
|
271 |
-
remove_prefix_length = input_ids.shape[1] - 1
|
272 |
-
|
273 |
-
input_ids = input_ids[:, remove_prefix_length:]
|
274 |
-
|
275 |
-
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
|
276 |
-
|
277 |
-
input_dict.update(
|
278 |
-
{
|
279 |
-
'decoder_attention_mask': decoder_attention_mask,
|
280 |
-
'decoder_position_ids': decoder_position_ids,
|
281 |
-
'encoder_outputs': encoder_outputs,
|
282 |
-
'past_key_values': past_key_values,
|
283 |
-
'use_cache': use_cache,
|
284 |
-
}
|
285 |
-
)
|
286 |
-
return input_dict
|
287 |
-
|
288 |
-
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
289 |
-
"""
|
290 |
-
Extract token type identifiers from the token identifiers.
|
291 |
-
|
292 |
-
Argument/s:
|
293 |
-
token_ids - token identifiers.
|
294 |
-
special_token_ids - special token identifiers that indicate the separation between sections.
|
295 |
-
token_type_id_section - token type identifier for each section.
|
296 |
-
|
297 |
-
Returns:
|
298 |
-
token_type_ids - token type identifiers.
|
299 |
-
"""
|
300 |
-
|
301 |
-
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
302 |
-
|
303 |
-
mbatch_size, seq_len = token_ids.shape
|
304 |
-
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
305 |
-
|
306 |
-
for i, j in enumerate(special_token_ids):
|
307 |
-
# Find first occurrence of special tokens that indicate the boundary between sections:
|
308 |
-
cols = (token_ids == j).int().argmax(dim=1)
|
309 |
-
rows = torch.arange(mbatch_size, device=token_ids.device)
|
310 |
-
|
311 |
-
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
312 |
-
cols += 1
|
313 |
-
|
314 |
-
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
315 |
-
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
316 |
-
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
317 |
-
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
318 |
-
|
319 |
-
# Indices to that correspond to the second sequence:
|
320 |
-
if rows.nelement() != 0:
|
321 |
-
ids = torch.stack([
|
322 |
-
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
323 |
-
y, seq_len, device=token_ids.device,
|
324 |
-
)
|
325 |
-
])
|
326 |
-
|
327 |
-
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
328 |
-
|
329 |
-
return token_type_ids
|
330 |
-
|
331 |
-
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
|
332 |
-
"""
|
333 |
-
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
|
334 |
-
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
|
335 |
-
|
336 |
-
Argument/s:
|
337 |
-
token_ids - token identifiers.
|
338 |
-
special_token_ids - special token identifiers that indicate the separation between sections.
|
339 |
-
|
340 |
-
Returns:
|
341 |
-
token_type_ids - token type identifiers.
|
342 |
-
"""
|
343 |
-
|
344 |
-
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
345 |
-
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
346 |
-
|
347 |
-
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
348 |
-
token_ids = token_ids[:, :-1]
|
349 |
-
|
350 |
-
for i, j in enumerate(special_token_ids):
|
351 |
-
|
352 |
-
# Find first occurrence of special token, which indicates the boundary between sections:
|
353 |
-
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
354 |
-
token_type_ids[exists] = token_type_id_sections[i + 1]
|
355 |
-
|
356 |
-
return token_type_ids
|
357 |
-
|
358 |
-
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
|
359 |
-
"""
|
360 |
-
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
361 |
-
|
362 |
-
Argument/s:
|
363 |
-
findings - findings sections.
|
364 |
-
impression - impression sections.
|
365 |
-
return_token_type_ids - return the token type identifiers.
|
366 |
-
tokenizer - Hugging Face tokenizer.
|
367 |
-
max_len - maximum number of tokens.
|
368 |
-
|
369 |
-
Returns:
|
370 |
-
decoder_input_ids - the token identifiers for the input of the decoder.
|
371 |
-
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
372 |
-
label_ids - the label token identifiers for the decoder.
|
373 |
-
"""
|
374 |
-
|
375 |
-
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
376 |
-
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
377 |
-
zip(findings, impression)]
|
378 |
-
|
379 |
-
# Tokenize the report:
|
380 |
-
tokenized = tokenizer(
|
381 |
-
reports,
|
382 |
-
padding='longest',
|
383 |
-
truncation=True,
|
384 |
-
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
385 |
-
return_tensors='pt',
|
386 |
-
return_token_type_ids=False,
|
387 |
-
add_special_tokens=False,
|
388 |
-
).to(self.device)
|
389 |
-
|
390 |
-
# Modify for language modelling:
|
391 |
-
batch_dict = {
|
392 |
-
|
393 |
-
# Labels for the decoder (shifted right by one for autoregression):
|
394 |
-
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
395 |
-
|
396 |
-
# Remove last token identifier to match the sequence length of the labels:
|
397 |
-
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
398 |
-
|
399 |
-
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
400 |
-
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
401 |
-
}
|
402 |
-
|
403 |
-
return batch_dict
|
404 |
-
|
405 |
-
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
|
406 |
-
"""
|
407 |
-
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
408 |
-
|
409 |
-
Argument/s:
|
410 |
-
tokenizer - Hugging Face tokenizer.
|
411 |
-
max_len - maximum number of tokens.
|
412 |
-
findings - findings sections.
|
413 |
-
impression - impression sections.
|
414 |
-
reports - prepared reports, with special tokens and report sections.
|
415 |
-
|
416 |
-
Returns:
|
417 |
-
decoder_input_ids - the token identifiers for the input of the decoder.
|
418 |
-
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
419 |
-
label_ids - the label token identifiers for the decoder.
|
420 |
-
"""
|
421 |
-
|
422 |
-
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
423 |
-
if reports is None:
|
424 |
-
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
|
425 |
-
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
426 |
-
zip(findings, impression)]
|
427 |
-
|
428 |
-
# Tokenize the report:
|
429 |
-
tokenized = tokenizer(
|
430 |
-
reports,
|
431 |
-
padding='longest',
|
432 |
-
truncation=True,
|
433 |
-
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
434 |
-
return_tensors='pt',
|
435 |
-
return_token_type_ids=False,
|
436 |
-
add_special_tokens=False,
|
437 |
-
).to(self.device)
|
438 |
-
|
439 |
-
# Modify for language modelling:
|
440 |
-
batch_dict = {
|
441 |
-
|
442 |
-
# Labels for the decoder (shifted right by one for autoregression):
|
443 |
-
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
444 |
-
|
445 |
-
# Remove last token identifier to match the sequence length of the labels:
|
446 |
-
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
447 |
-
|
448 |
-
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
449 |
-
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
450 |
-
}
|
451 |
-
|
452 |
-
return batch_dict
|
453 |
-
|
454 |
-
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
|
455 |
-
"""
|
456 |
-
Split the token identifiers into sections, then convert the token identifiers into strings.
|
457 |
-
|
458 |
-
Argument/s:
|
459 |
-
token_ids - token identifiers.
|
460 |
-
special_token_ids - special token identifiers that indicate the end of each section.
|
461 |
-
tokenizer - Hugging Face tokenizer.
|
462 |
-
|
463 |
-
Returns:
|
464 |
-
token_type_ids - token type identifiers.
|
465 |
-
"""
|
466 |
-
|
467 |
-
_, seq_len = token_ids.shape
|
468 |
-
|
469 |
-
# The number of sections is the same as the number of special_token_ids:
|
470 |
-
num_sections = len(special_token_ids)
|
471 |
-
|
472 |
-
sections = {k: [] for k in range(num_sections)}
|
473 |
-
|
474 |
-
for i in token_ids:
|
475 |
-
prev_col = 0
|
476 |
-
for j, k in enumerate(special_token_ids):
|
477 |
-
|
478 |
-
# The maximum sequence length was exceeded, thus no more tokens:
|
479 |
-
if prev_col >= seq_len:
|
480 |
-
sections[j].append('')
|
481 |
-
continue
|
482 |
-
|
483 |
-
# Find first occurrence of special tokens that indicate the boundary between sections:
|
484 |
-
col = (i == k).int().argmax().item()
|
485 |
-
|
486 |
-
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
487 |
-
# the maximum sequence length):
|
488 |
-
if col == 0:
|
489 |
-
col = seq_len
|
490 |
-
|
491 |
-
# Extract section token identifiers:
|
492 |
-
section_token_ids = i[prev_col:col]
|
493 |
-
prev_col = col
|
494 |
-
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
495 |
-
|
496 |
-
sections[j].append(section_string)
|
497 |
-
|
498 |
-
return tuple(sections.values())
|
499 |
-
|
500 |
-
@staticmethod
|
501 |
-
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
502 |
-
|
503 |
-
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
504 |
-
report_seq_len = causal_2d_attention_mask.shape[-1]
|
505 |
-
|
506 |
-
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
507 |
-
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
508 |
-
|
509 |
-
# Upper left of attention matrix:
|
510 |
-
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
|
511 |
-
upper_left = upper_left * non_causal_2d_attention_mask
|
512 |
-
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
|
513 |
-
|
514 |
-
causal_mask = torch.tril(
|
515 |
-
torch.ones(
|
516 |
-
(
|
517 |
-
report_seq_len,
|
518 |
-
report_seq_len,
|
519 |
-
),
|
520 |
-
dtype=torch.long,
|
521 |
-
device=causal_2d_attention_mask.device,
|
522 |
-
),
|
523 |
-
)
|
524 |
-
|
525 |
-
# Lower right of attention matrix:
|
526 |
-
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
527 |
-
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
528 |
-
lower_right = lower_right * causal_mask
|
529 |
-
|
530 |
-
# Upper right of attention matrix:
|
531 |
-
upper_right = torch.zeros(
|
532 |
-
causal_2d_attention_mask.shape[0],
|
533 |
-
1,
|
534 |
-
prompt_seq_len,
|
535 |
-
report_seq_len,
|
536 |
-
dtype=torch.long,
|
537 |
-
device=causal_2d_attention_mask.device,
|
538 |
-
)
|
539 |
-
|
540 |
-
# Lower left of attention matrix:
|
541 |
-
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
542 |
-
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
543 |
-
|
544 |
-
left = torch.cat((upper_left, lower_left), dim=2)
|
545 |
-
right = torch.cat((upper_right, lower_right), dim=2)
|
546 |
-
|
547 |
-
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
548 |
-
return mixed_causality_4d_attention_mask
|
549 |
-
|
550 |
-
@staticmethod
|
551 |
-
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
552 |
-
|
553 |
-
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
554 |
-
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
555 |
-
|
556 |
-
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
557 |
-
return mixed_causality_4d_attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|