File size: 21,163 Bytes
b36c990 697b021 5f20c34 b36c990 697b021 b36c990 5f20c34 b36c990 7222946 b36c990 5f20c34 b36c990 5f20c34 697b021 b36c990 7222946 b36c990 697b021 b36c990 7222946 b36c990 7222946 697b021 b36c990 697b021 b36c990 7222946 b36c990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import os
import warnings
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import transformers
from peft import LoraConfig, TaskType, get_peft_config, get_peft_model
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, PreTrainedTokenizerFast,
VisionEncoderDecoderModel)
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import (BaseModelOutput, ModelOutput,
Seq2SeqLMOutput)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
VisionEncoderDecoderConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.projection_size = projection_size
class CvtProjectionHead(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
# No bias as following layer normalisation with bias:
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer_norm(x)
x = self.projection(x)
return x
class MultiCvtWithProjectionHead(transformers.CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
self.projection_head = CvtProjectionHead(config)
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Flatten the batch and study_id dimensions:
outputs = self.cvt(
pixel_values.view(-1, *pixel_values.shape[2:]),
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Flatten h x w:
last_hidden_state = torch.flatten(outputs.last_hidden_state, 2)
# Project the features for each spatial position to the decoder's hidden size:
projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))
# Concatenate the features for each chest X-ray:
projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])
# Derive the attention mask from the pixel values:
attention_mask = (pixel_values[:, :, 0, 0, 0] != 0.0).repeat_interleave(last_hidden_state.shape[-1], dim=1)
if not return_dict:
return projection
return ModelOutput(
last_hidden_state=projection, attention_mask=attention_mask,
)
class LongitudinalPromptMultiCXREncoderDecoderModel(VisionEncoderDecoderModel):
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
encoder_decoder_ckpt_name: Optional[str] = None,
):
if decoder:
assert decoder.config.add_cross_attention, '"add_cross_attention" must be True for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
# initialize with config
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = MultiCvtWithProjectionHead(config=config.encoder)
# Decoder:
if decoder is None:
decoder = transformers.BertLMHeadModel(config=config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# Load multi checkpoint:
if encoder_decoder_ckpt_name:
encoder_decoder = AutoModel.from_pretrained(encoder_decoder_ckpt_name, trust_remote_code=True)
self.load_state_dict(encoder_decoder.state_dict())
else:
warnings.warn('The encoder-to-decoder model was not warm-started before applying low-rank approximation.')
# Freeze the encoder:
for p in self.encoder.parameters():
p.requires_grad = False
# Freeze the decoder and add LoRA:
peft_config = LoraConfig(
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules='bert.encoder.layer.[0-9]+.attention.self.(query|key)',
)
self.decoder = get_peft_model(self.decoder, peft_config)
self.decoder.print_trainable_parameters()
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
) # CvT does not support output_attentions.
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_outputs.attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
# encoder_hidden_states=encoder_outputs.hidden_states,
# encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
special_token_ids,
mask_token_id,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
"""
# An update to generate() now prepends bos_token_id to each sequence if it does not exist at the start of the input:
# https://github.com/huggingface/transformers/blob/d533465150532b0c5de167b574e59f64c68b1154/src/transformers/generation/utils.py#L699C13-L699C30
# Hence, we remove the prepended bos_token_id from each sequence if it is there:
if torch.all(input_ids[:, 0] == 1):
input_ids = input_ids[:, 1:]
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = (input_ids != mask_token_id).int()
decoder_position_ids = torch.nn.functional.relu(
torch.cumsum(decoder_attention_mask, dim=1, dtype=torch.int64) - 1
)
if not past_key_values:
token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, [0, 1, 0, 1])
else:
token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids, [0, 1, 0, 1])
decoder_position_ids = decoder_position_ids[:, -1:]
input_dict = {
'attention_mask': attention_mask,
'decoder_attention_mask': decoder_attention_mask,
'decoder_input_ids': decoder_inputs['input_ids'],
'decoder_token_type_ids': token_type_ids,
'decoder_position_ids': decoder_position_ids,
'encoder_outputs': encoder_outputs,
'past_key_values': decoder_inputs['past_key_values'],
'use_cache': use_cache,
}
return input_dict
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
"""
Extract token type identifiers from the token identifiers.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
token_type_id_section - token type identifier for each section.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
mbatch_size, seq_len = token_ids.shape
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
for i, j in enumerate(special_token_ids):
# Find first occurrence of special tokens that indicate the boundary between sections:
cols = (token_ids == j).int().argmax(dim=1)
rows = torch.arange(mbatch_size, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
cols += 1
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
# Indices to that correspond to the second sequence:
if rows.nelement() != 0:
ids = torch.stack([
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
y, seq_len, device=token_ids.device,
)
])
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
return token_type_ids
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
"""
Extract token type identifiers from the token identifiers if past != None.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
token_ids = token_ids[:, :-1]
for i, j in enumerate(special_token_ids):
# Find first occurrence of special token, which indicates the boundary between sections:
exists = torch.any(token_ids == j, dim=1, keepdim=True)
token_type_ids[exists] = token_type_id_sections[i + 1]
return token_type_ids
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
findings - findings section.
impression - impression section.
return_token_type_ids - return the token type identifiers.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
report,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
"""
Split the token identifiers into sections, then convert the token identifiers into strings.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the end of each section.
tokenizer - Hugging Face tokenizer.
Returns:
token_type_ids - token type identifiers.
"""
_, seq_len = token_ids.shape
# The number of sections is the same as the number of special_token_ids:
num_sections = len(special_token_ids)
sections = {k: [] for k in range(num_sections)}
for i in token_ids:
prev_col = 0
for j, k in enumerate(special_token_ids):
# The maximum sequence length was exceeded, thus no more tokens:
if prev_col >= seq_len:
sections[j].append('')
continue
# Find first occurrence of special tokens that indicate the boundary between sections:
col = (i == k).int().argmax().item()
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
# the maximum sequence length):
if col == 0:
col = seq_len
# Extract section token identifiers:
section_token_ids = i[prev_col:col]
prev_col = col
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
sections[j].append(section_string)
return tuple(sections.values())
def tokenize_prompt(
self,
previous_findings: str,
previous_impression: str,
tokenizer: PreTrainedTokenizerFast,
max_len: int,
add_bos_token_id: bool = False,
):
"""
Tokenize the sections of the previous report to be used as a prompt.
Argument/s:
previous_findings - previous findings section.
previous_impression - previous impression section.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
add_bos_token_id - whether to add the BOS token identifier to the prompt.
Returns:
input_ids - the input identifiers for the previous impression.
attention_mask - the attention mask for the previous impression
"""
# Use [NPF]/[NPI] special token if no previous findings/impression:
previous_findings = ['[NPF]' if not i else i for i in previous_findings]
previous_impression = ['[NPI]' if not i else i for i in previous_impression]
# Prepare the sections for the tokenizer by placing special tokens:
previous_sections = [
f'[PMT]{i}[PMT-SEP]{j}{tokenizer.bos_token}' if add_bos_token_id else f'[PMT]{i}[PMT-SEP]{j}' \
for i, j in zip(previous_findings, previous_impression)
]
# Tokenize:
previous_sections = tokenizer(
previous_sections,
padding='longest',
truncation=True,
max_length=max_len,
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Ensure BOS token identifier is at the end of the input_ids:
if previous_sections.input_ids.shape[1] == max_len:
previous_sections.input_ids[:, -1] = torch.where(
previous_sections.attention_mask[:, -1] == 1,
tokenizer.bos_token_id,
previous_sections.input_ids[:, -1],
)
assert previous_sections.input_ids.shape[1] <= max_len
return {'input_ids': previous_sections.input_ids, 'attention_mask': previous_sections.attention_mask}
|