File size: 21,143 Bytes
b36c990
697b021
5f20c34
b36c990
 
 
 
 
 
ac09e83
b36c990
ac09e83
b36c990
ac09e83
 
 
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7222946
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
ac09e83
5f20c34
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f20c34
697b021
b36c990
 
 
7222946
b36c990
 
 
 
 
 
 
 
 
 
 
697b021
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7222946
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7222946
697b021
 
 
 
 
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697b021
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7222946
 
 
 
 
 
b36c990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import warnings
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union

import torch
import transformers
from peft import LoraConfig, TaskType, get_peft_config, get_peft_model
from torch.nn import CrossEntropyLoss
from transformers import AutoModel, PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
    VisionEncoderDecoderConfig,
)
from transformers.utils import logging

logger = logging.get_logger(__name__)


class CvtWithProjectionHeadConfig(transformers.CvtConfig):
    def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.projection_size = projection_size


class CvtProjectionHead(torch.nn.Module):

    def __init__(self, config) -> None:
        super().__init__()

        # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
        self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)

        # No bias as following layer normalisation with bias:
        self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)


    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer_norm(x)
        x = self.projection(x)
        return x


class MultiCvtWithProjectionHead(transformers.CvtPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
        self.projection_head = CvtProjectionHead(config)

        # Initialize weights and apply final processing:
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
    ) -> Union[Tuple, ModelOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Flatten the batch and study_id dimensions:
        outputs = self.cvt(
            pixel_values.view(-1, *pixel_values.shape[2:]),
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # Flatten h x w:
        last_hidden_state = torch.flatten(outputs.last_hidden_state, 2)

        # Project the features for each spatial position to the decoder's hidden size:
        projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))

        # Concatenate the features for each chest X-ray:
        projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])

        # Derive the attention mask from the pixel values:
        attention_mask = (pixel_values[:, :, 0, 0, 0] != 0.0).repeat_interleave(last_hidden_state.shape[-1], dim=1)

        if not return_dict:
            return projection

        return ModelOutput(
            last_hidden_state=projection, attention_mask=attention_mask,
        )
    

class LongitudinalPromptMultiCXREncoderDecoderModel(VisionEncoderDecoderModel):

    config_class = VisionEncoderDecoderConfig
    base_model_prefix = "vision_encoder_decoder"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def __init__(        
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
        encoder_decoder_ckpt_name: Optional[str] = None,
    ):

        if decoder:
            assert decoder.config.add_cross_attention, '"add_cross_attention" must be True for the given decoder'
            assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'

        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        config.tie_word_embeddings = False

        # initialize with config
        PreTrainedModel.__init__(self, config)

        # Encoder:
        if encoder is None:
            encoder = MultiCvtWithProjectionHead(config=config.encoder)

        # Decoder:
        if decoder is None:
            decoder = transformers.BertLMHeadModel(config=config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )
            
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        # Load multi checkpoint:
        if encoder_decoder_ckpt_name:
            encoder_decoder = AutoModel.from_pretrained(encoder_decoder_ckpt_name, trust_remote_code=True)
            self.load_state_dict(encoder_decoder.state_dict())
        else:
            warnings.warn('The encoder-to-decoder model was not warm-started before applying low-rank approximation.')

        # Freeze the encoder:
        for p in self.encoder.parameters():
            p.requires_grad = False
            
        # Freeze the decoder and add LoRA:
        peft_config = LoraConfig(
            inference_mode=False, 
            r=8, 
            lora_alpha=32, 
            lora_dropout=0.1, 
            target_modules='bert.encoder.layer.[0-9]+.attention.self.(query|key)',
        )
        self.decoder = get_peft_model(self.decoder, peft_config)
        self.decoder.print_trainable_parameters()

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )  # CvT does not support output_attentions.
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]
        
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_outputs.attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Loss:
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            # encoder_hidden_states=encoder_outputs.hidden_states,
            # encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        special_token_ids,
        mask_token_id,
        past_key_values=None,
        attention_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        """
        Modification of: 
            https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
        """

        # An update to generate() now prepends bos_token_id to each sequence if it does not exist at the start of the input: 
        #   https://github.com/huggingface/transformers/blob/d533465150532b0c5de167b574e59f64c68b1154/src/transformers/generation/utils.py#L699C13-L699C30
        # Hence, we remove the prepended bos_token_id from each sequence if it is there:
        if torch.all(input_ids[:, 0] == 1):
            input_ids = input_ids[:, 1:]

        decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
        decoder_attention_mask = (input_ids != mask_token_id).int()
        decoder_position_ids = torch.nn.functional.relu(
            torch.cumsum(decoder_attention_mask, dim=1, dtype=torch.int64) - 1
        )

        if not past_key_values:
            token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, [0, 1, 0, 1])
        else:
            token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids, [0, 1, 0, 1])
            decoder_position_ids = decoder_position_ids[:, -1:]

        input_dict = {
            'attention_mask': attention_mask,
            'decoder_attention_mask': decoder_attention_mask,
            'decoder_input_ids': decoder_inputs['input_ids'],
            'decoder_token_type_ids': token_type_ids,
            'decoder_position_ids': decoder_position_ids,
            'encoder_outputs': encoder_outputs,
            'past_key_values': decoder_inputs['past_key_values'],
            'use_cache': use_cache,
        }
        return input_dict
    
    def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
        """
        Extract token type identifiers from the token identifiers.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.
            token_type_id_section - token type identifier for each section.

        Returns:
            token_type_ids - token type identifiers.
        """

        token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))

        mbatch_size, seq_len = token_ids.shape
        token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)

        for i, j in enumerate(special_token_ids):
            # Find first occurrence of special tokens that indicate the boundary between sections:
            cols = (token_ids == j).int().argmax(dim=1)
            rows = torch.arange(mbatch_size, device=token_ids.device)

            # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
            cols += 1

            # Ensure that the column index is not out of bounds. If 0, then token_id not present.
            # This is safe as index 0 is always a special token (now equal to 1 due to +1):
            rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
            cols = cols[torch.logical_and(cols != 1, cols < seq_len)]

            # Indices to that correspond to the second sequence:
            if rows.nelement() != 0:
                ids = torch.stack([
                    torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
                        y, seq_len, device=token_ids.device,
                    )
                ])

                token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]

        return token_type_ids

    def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
        """
        Extract token type identifiers from the token identifiers if past != None.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the separation between sections.

        Returns:
            token_type_ids - token type identifiers.
        """

        token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
        token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)

        # https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
        token_ids = token_ids[:, :-1]

        for i, j in enumerate(special_token_ids):

            # Find first occurrence of special token, which indicates the boundary between sections:
            exists = torch.any(token_ids == j, dim=1, keepdim=True)
            token_type_ids[exists] = token_type_id_sections[i + 1]

        return token_type_ids
    
    def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
        """
        Tokenize the reports and creates the inputs and targets for teacher forcing.

        Argument/s:
            findings - findings section.
            impression - impression section.
            return_token_type_ids - return the token type identifiers.
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.

        Returns:
            decoder_input_ids - the token identifiers for the input of the decoder.
            decoder_attention_mask - the attention mask for the decoder_input_ids.
            label_ids - the label token identifiers for the decoder.
        """

        # Prepare the sections for the tokenizer by placing special tokens between each section:
        report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
                  zip(findings, impression)]

        # Tokenize the report:
        tokenized = tokenizer(
            report,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the bias between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict

    def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
        """
        Split the token identifiers into sections, then convert the token identifiers into strings.

        Argument/s:
            token_ids - token identifiers.
            special_token_ids - special token identifiers that indicate the end of each section.
            tokenizer - Hugging Face tokenizer.

        Returns:
            token_type_ids - token type identifiers.
        """

        _, seq_len = token_ids.shape

        # The number of sections is the same as the number of special_token_ids:
        num_sections = len(special_token_ids)

        sections = {k: [] for k in range(num_sections)}

        for i in token_ids:
            prev_col = 0
            for j, k in enumerate(special_token_ids):

                # The maximum sequence length was exceeded, thus no more tokens:
                if prev_col >= seq_len:
                    sections[j].append('')
                    continue

                # Find first occurrence of special tokens that indicate the boundary between sections:
                col = (i == k).int().argmax().item()

                # If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
                # the maximum sequence length):
                if col == 0:
                    col = seq_len

                # Extract section token identifiers:
                section_token_ids = i[prev_col:col]
                prev_col = col
                section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)

                sections[j].append(section_string)

        return tuple(sections.values())

    def tokenize_prompt(
        self, 
        previous_findings: str, 
        previous_impression: str, 
        tokenizer: PreTrainedTokenizerFast, 
        max_len: int,
        add_bos_token_id: bool = False,
    ):
        """
        Tokenize the sections of the previous report to be used as a prompt.

        Argument/s:
            previous_findings - previous findings section.
            previous_impression - previous impression section.
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.
            add_bos_token_id - whether to add the BOS token identifier to the prompt.

        Returns:
            input_ids - the input identifiers for the previous impression.
            attention_mask - the attention mask for the previous impression
        """

        # Use [NPF]/[NPI] special token if no previous findings/impression:
        previous_findings = ['[NPF]' if not i else i for i in previous_findings]
        previous_impression = ['[NPI]' if not i else i for i in previous_impression]

        # Prepare the sections for the tokenizer by placing special tokens:
        previous_sections = [
            f'[PMT]{i}[PMT-SEP]{j}{tokenizer.bos_token}' if add_bos_token_id else f'[PMT]{i}[PMT-SEP]{j}' \
                for i, j in zip(previous_findings, previous_impression)
        ]

        # Tokenize:
        previous_sections = tokenizer(
            previous_sections,
            padding='longest',
            truncation=True,
            max_length=max_len,
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,
        ).to(self.device)

        # Ensure BOS token identifier is at the end of the input_ids:
        if previous_sections.input_ids.shape[1] == max_len:
            previous_sections.input_ids[:, -1] = torch.where(
                previous_sections.attention_mask[:, -1] == 1,
                tokenizer.bos_token_id,
                previous_sections.input_ids[:, -1],
            ) 

        assert previous_sections.input_ids.shape[1] <= max_len

        return {'input_ids': previous_sections.input_ids, 'attention_mask': previous_sections.attention_mask}