File size: 11,856 Bytes
ded32c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc39f4
 
 
ded32c9
 
 
 
 
 
 
 
 
 
4dc39f4
 
 
 
 
 
 
 
4aa737e
 
ded32c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc39f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084f69
 
 
 
 
ded32c9
 
1084f69
ded32c9
 
1084f69
ded32c9
 
 
 
1084f69
 
 
 
 
 
ded32c9
 
1084f69
 
ded32c9
1084f69
62db3d9
1084f69
ded32c9
 
1084f69
ded32c9
 
1084f69
ded32c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084f69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
from typing import Any, Optional, Tuple, Union

import torch
import transformers
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
    VisionEncoderDecoderConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class CvtWithProjectionHeadConfig(transformers.CvtConfig):
    def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.projection_size = projection_size


class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
    last_hidden_state: torch.FloatTensor


class CvtProjectionHead(torch.nn.Module):

    def __init__(self, config) -> None:
        super().__init__()

        # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
        self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)

        # No bias as following layer normalisation with bias:
        self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)


    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer_norm(x)
        x = self.projection(x)
        return x


class CvtWithProjectionHead(transformers.CvtPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
        self.projection_head = CvtProjectionHead(config)

        # Initialize weights and apply final processing:
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.cvt(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        projection = self.projection_head(
            torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]),
        )

        if not return_dict:
            return projection

        return ModelOutputWithProjectionEmbedding(
            last_hidden_state=projection,
        )
    

class MedICapEncoderDecoderModel(VisionEncoderDecoderModel):

    config_class = VisionEncoderDecoderConfig
    base_model_prefix = "vision_encoder_decoder"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def __init__(        
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):

        if decoder:
            assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
            assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'

        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        config.tie_word_embeddings = False

        # initialize with config
        PreTrainedModel.__init__(self, config)

        # Encoder:
        if encoder is None:
            encoder = CvtWithProjectionHead(config=config.encoder)

        # Decoder:
        if decoder is None:
            decoder = transformers.GPT2LMHeadModel(config=config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )
            
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if decoder_inputs_embeds is None:
            decoder_inputs_embeds = self.decoder.transformer.wte(decoder_input_ids)

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )  # CvT does not support output_attentions.
            decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
            if decoder_attention_mask is not None:
                decoder_attention_mask = torch.cat(
                    [
                        torch.ones(encoder_outputs[0].shape[:-1], dtype=decoder_attention_mask.dtype, device=self.device), 
                        decoder_attention_mask
                    ], 
                    dim=1,
                )            

        decoder_outputs = self.decoder(
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Loss:
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        """
        Modification of: 
            https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660

        This can help with managing input_embeds and input_ids: 
            https://github.com/huggingface/transformers/issues/6535
        """
        input_dict = {'use_cache': use_cache, 'encoder_outputs': encoder_outputs, 'attention_mask': attention_mask}
    
        if past_key_values is None:
            decoder_inputs = self.decoder.prepare_inputs_for_generation(
                input_ids, inputs_embeds=encoder_outputs[0], past_key_values=past_key_values,
            )
            input_dict['decoder_inputs_embeds'] = decoder_inputs['inputs_embeds']
        else:
            decoder_inputs = self.decoder.prepare_inputs_for_generation(
                input_ids, past_key_values=past_key_values,
            )
            input_dict['decoder_input_ids'] = decoder_inputs['input_ids']
        input_dict['past_key_values'] = decoder_inputs['past_key_values']
        input_dict['decoder_attention_mask'] = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None

        return input_dict

    def tokenize_captions_teacher_forcing(
        self, 
        captions: str, 
        tokenizer: PreTrainedTokenizerFast, 
        max_len: int,
    ):
        """
        Tokenizes the captions and creates the inputs and targets for teacher forcing.

        Argument/s:
            captions - the captions.
            tokenizer - Hugging Face tokenizer.
            max_len - maximum number of tokens.

        Returns:
            batch_dict = {
                decoder_input_ids - the token identifiers for the input of the decoder.
                decoder_attention_mask - the attention mask for the decoder_input_ids.
                decoder_token_type_ids - the token type identifiers for the decoder_input_ids.
                label_ids - the label token identifiers for the decoder.
            }
        """

        # Prepare the caption for the tokenizer by placing the special tokens:
        caption = [f'{tokenizer.bos_token}{i}{tokenizer.eos_token}' for i in captions]

        # Tokenize the caption:
        tokenized = tokenizer(
            caption,
            padding='longest',
            truncation=True,
            max_length=max_len + 1,  # +1 to account for the shift between input and target.
            return_tensors='pt',
            return_token_type_ids=False,
            add_special_tokens=False,  # Done in prepare_sections_for_tokenizer()
        ).to(self.device)

        # Modify for language modelling:
        batch_dict = {

            # Labels for the decoder (shifted right by one for autoregression):
            'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),

            # Remove last token identifier to match the sequence length of the labels:
            'decoder_input_ids': tokenized['input_ids'][:, :-1],

            # Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
            'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
        }

        return batch_dict