|
import os |
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import torch |
|
import transformers |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \ |
|
VisionEncoderDecoderConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CvtWithProjectionHeadConfig(transformers.CvtConfig): |
|
def __init__(self, projection_size: int = None, **kwargs: Any) -> None: |
|
super().__init__(**kwargs) |
|
self.projection_size = projection_size |
|
|
|
|
|
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput): |
|
last_hidden_state: torch.FloatTensor |
|
|
|
|
|
class CvtProjectionHead(torch.nn.Module): |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
|
|
|
|
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps) |
|
|
|
|
|
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.layer_norm(x) |
|
x = self.projection(x) |
|
return x |
|
|
|
|
|
class CvtWithProjectionHead(transformers.CvtPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.cvt = transformers.CvtModel(config, add_pooling_layer=False) |
|
self.projection_head = CvtProjectionHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.cvt( |
|
pixel_values, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
projection = self.projection_head( |
|
torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]), |
|
) |
|
|
|
if not return_dict: |
|
return projection |
|
|
|
return ModelOutputWithProjectionEmbedding( |
|
last_hidden_state=projection, |
|
) |
|
|
|
|
|
class MedICapEncoderDecoderModel(VisionEncoderDecoderModel): |
|
|
|
config_class = VisionEncoderDecoderConfig |
|
base_model_prefix = "vision_encoder_decoder" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
config: Optional[PretrainedConfig] = None, |
|
encoder: Optional[PreTrainedModel] = None, |
|
decoder: Optional[PreTrainedModel] = None, |
|
): |
|
|
|
if decoder: |
|
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder' |
|
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder' |
|
|
|
if config is None and (encoder is None or decoder is None): |
|
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") |
|
if config is None: |
|
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) |
|
else: |
|
if not isinstance(config, self.config_class): |
|
raise ValueError(f"Config: {config} has to be of type {self.config_class}") |
|
|
|
config.tie_word_embeddings = False |
|
|
|
|
|
PreTrainedModel.__init__(self, config) |
|
|
|
|
|
if encoder is None: |
|
encoder = CvtWithProjectionHead(config=config.encoder) |
|
|
|
|
|
if decoder is None: |
|
decoder = transformers.GPT2LMHeadModel(config=config.decoder) |
|
|
|
|
|
decoder.resize_token_embeddings(config.decoder.vocab_size + 2) |
|
|
|
self.encoder = encoder |
|
self.decoder = decoder |
|
|
|
if self.encoder.config.to_dict() != self.config.encoder.to_dict(): |
|
logger.warning( |
|
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" |
|
f" {self.config.encoder}" |
|
) |
|
if self.decoder.config.to_dict() != self.config.decoder.to_dict(): |
|
logger.warning( |
|
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" |
|
f" {self.config.decoder}" |
|
) |
|
|
|
self.encoder.config = self.config.encoder |
|
self.decoder.config = self.config.decoder |
|
|
|
@classmethod |
|
def from_encoder_decoder_pretrained( |
|
cls, |
|
encoder_pretrained_model_name_or_path: str = None, |
|
decoder_pretrained_model_name_or_path: str = None, |
|
*model_args, |
|
**kwargs, |
|
) -> PreTrainedModel: |
|
kwargs_encoder = { |
|
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") |
|
} |
|
|
|
kwargs_decoder = { |
|
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") |
|
} |
|
|
|
|
|
for key in kwargs_encoder.keys(): |
|
del kwargs["encoder_" + key] |
|
for key in kwargs_decoder.keys(): |
|
del kwargs["decoder_" + key] |
|
|
|
|
|
|
|
|
|
encoder = kwargs_encoder.pop("model", None) |
|
if encoder is None: |
|
if encoder_pretrained_model_name_or_path is None: |
|
raise ValueError( |
|
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " |
|
"to be defined." |
|
) |
|
|
|
if "config" not in kwargs_encoder: |
|
encoder_config, kwargs_encoder = AutoConfig.from_pretrained( |
|
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True |
|
) |
|
|
|
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: |
|
logger.info( |
|
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " |
|
"from a decoder model. Cross-attention and casual mask are disabled." |
|
) |
|
encoder_config.is_decoder = False |
|
encoder_config.add_cross_attention = False |
|
|
|
kwargs_encoder["config"] = encoder_config |
|
|
|
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) |
|
|
|
decoder = kwargs_decoder.pop("model", None) |
|
if decoder is None: |
|
if decoder_pretrained_model_name_or_path is None: |
|
raise ValueError( |
|
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " |
|
"to be defined." |
|
) |
|
|
|
if "config" not in kwargs_decoder: |
|
decoder_config, kwargs_decoder = AutoConfig.from_pretrained( |
|
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True |
|
) |
|
|
|
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: |
|
logger.info( |
|
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" |
|
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" |
|
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." |
|
) |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
kwargs_decoder["config"] = decoder_config |
|
|
|
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: |
|
logger.warning( |
|
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " |
|
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " |
|
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " |
|
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " |
|
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`" |
|
) |
|
|
|
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) |
|
|
|
|
|
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) |
|
|
|
|
|
config.tie_word_embeddings = False |
|
return cls(encoder=encoder, decoder=decoder, config=config) |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} |
|
|
|
kwargs_decoder = { |
|
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") |
|
} |
|
|
|
if encoder_outputs is None: |
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
encoder_outputs = self.encoder( |
|
pixel_values, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
**kwargs_encoder, |
|
) |
|
elif isinstance(encoder_outputs, tuple): |
|
encoder_outputs = BaseModelOutput(*encoder_outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
embeddings = self.decoder.transformer.wte(decoder_input_ids) |
|
embeddings = torch.cat([encoder_outputs[0], embeddings], dim=1) |
|
|
|
decoder_attention_mask = torch.cat( |
|
[ |
|
torch.ones(encoder_outputs[0].shape[:-1], dtype=decoder_attention_mask.dtype, device=self.device), |
|
decoder_attention_mask |
|
], |
|
dim=1, |
|
) |
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
past_key_values=past_key_values, |
|
return_dict=return_dict, |
|
**kwargs_decoder, |
|
) |
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
logits = decoder_outputs.logits if return_dict else decoder_outputs[0] |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) |
|
|
|
if not return_dict: |
|
if loss is not None: |
|
return (loss,) + decoder_outputs + encoder_outputs |
|
else: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=decoder_outputs.logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
|
|
|
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
special_token_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
""" |
|
Modification of: |
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660 |
|
""" |
|
|
|
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) |
|
decoder_attention_mask = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None |
|
|
|
if not past_key_values: |
|
token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids) |
|
else: |
|
token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids) |
|
|
|
input_dict = { |
|
'attention_mask': attention_mask, |
|
'decoder_attention_mask': decoder_attention_mask, |
|
'decoder_input_ids': decoder_inputs['input_ids'], |
|
'decoder_token_type_ids': token_type_ids, |
|
'encoder_outputs': encoder_outputs, |
|
'past_key_values': decoder_inputs['past_key_values'], |
|
'use_cache': use_cache, |
|
} |
|
return input_dict |
|
|
|
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None): |
|
""" |
|
Extract token type identifiers from the token identifiers. |
|
|
|
Argument/s: |
|
token_ids - token identifiers. |
|
special_token_ids - special token identifiers that indicate the separation between sections. |
|
token_type_id_section - token type identifier for each section. |
|
|
|
Returns: |
|
token_type_ids - token type identifiers. |
|
""" |
|
|
|
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1)) |
|
|
|
mbatch_size, seq_len = token_ids.shape |
|
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device) |
|
|
|
for i, j in enumerate(special_token_ids): |
|
|
|
cols = (token_ids == j).int().argmax(dim=1) |
|
rows = torch.arange(mbatch_size, device=token_ids.device) |
|
|
|
|
|
cols += 1 |
|
|
|
|
|
|
|
rows = rows[torch.logical_and(cols != 1, cols < seq_len)] |
|
cols = cols[torch.logical_and(cols != 1, cols < seq_len)] |
|
|
|
|
|
if rows.nelement() != 0: |
|
ids = torch.stack([ |
|
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange( |
|
y, seq_len, device=token_ids.device, |
|
) |
|
]) |
|
|
|
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1] |
|
|
|
return token_type_ids |
|
|
|
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None): |
|
""" |
|
Extract token type identifiers from the token identifiers if past != None. |
|
|
|
Argument/s: |
|
token_ids - token identifiers. |
|
special_token_ids - special token identifiers that indicate the separation between sections. |
|
|
|
Returns: |
|
token_type_ids - token type identifiers. |
|
""" |
|
|
|
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1)) |
|
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device) |
|
|
|
|
|
token_ids = token_ids[:, :-1] |
|
|
|
for i, j in enumerate(special_token_ids): |
|
|
|
|
|
exists = torch.any(token_ids == j, dim=1, keepdim=True) |
|
token_type_ids[exists] = token_type_id_sections[i + 1] |
|
|
|
return token_type_ids |
|
|
|
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int): |
|
""" |
|
Tokenize the reports and creates the inputs and targets for teacher forcing. |
|
|
|
Argument/s: |
|
findings - findings section. |
|
impression - impression section. |
|
return_token_type_ids - return the token type identifiers. |
|
tokenizer - Hugging Face tokenizer. |
|
max_len - maximum number of tokens. |
|
|
|
Returns: |
|
decoder_input_ids - the token identifiers for the input of the decoder. |
|
decoder_attention_mask - the attention mask for the decoder_input_ids. |
|
label_ids - the label token identifiers for the decoder. |
|
""" |
|
|
|
|
|
report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in |
|
zip(findings, impression)] |
|
|
|
|
|
tokenized = tokenizer( |
|
report, |
|
padding='longest', |
|
truncation=True, |
|
max_length=max_len + 1, |
|
return_tensors='pt', |
|
return_token_type_ids=False, |
|
add_special_tokens=False, |
|
).to(self.device) |
|
|
|
|
|
batch_dict = { |
|
|
|
|
|
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(), |
|
|
|
|
|
'decoder_input_ids': tokenized['input_ids'][:, :-1], |
|
|
|
|
|
'decoder_attention_mask': tokenized['attention_mask'][:, 1:], |
|
} |
|
|
|
return batch_dict |
|
|
|
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast): |
|
""" |
|
Split the token identifiers into sections, then convert the token identifiers into strings. |
|
|
|
Argument/s: |
|
token_ids - token identifiers. |
|
special_token_ids - special token identifiers that indicate the end of each section. |
|
tokenizer - Hugging Face tokenizer. |
|
|
|
Returns: |
|
token_type_ids - token type identifiers. |
|
""" |
|
|
|
_, seq_len = token_ids.shape |
|
|
|
|
|
num_sections = len(special_token_ids) |
|
|
|
sections = {k: [] for k in range(num_sections)} |
|
|
|
for i in token_ids: |
|
prev_col = 0 |
|
for j, k in enumerate(special_token_ids): |
|
|
|
|
|
if prev_col >= seq_len: |
|
sections[j].append('') |
|
continue |
|
|
|
|
|
col = (i == k).int().argmax().item() |
|
|
|
|
|
|
|
if col == 0: |
|
col = seq_len |
|
|
|
|
|
section_token_ids = i[prev_col:col] |
|
prev_col = col |
|
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True) |
|
|
|
sections[j].append(section_string) |
|
|
|
return tuple(sections.values()) |