medicap / modelling_medicap.py
anicolson's picture
Upload folder using huggingface_hub
ded32c9
raw
history blame
21.9 kB
import os
from typing import Any, Optional, Tuple, Union
import torch
import transformers
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
VisionEncoderDecoderConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.projection_size = projection_size
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
last_hidden_state: torch.FloatTensor
class CvtProjectionHead(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
# No bias as following layer normalisation with bias:
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer_norm(x)
x = self.projection(x)
return x
class CvtWithProjectionHead(transformers.CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
self.projection_head = CvtProjectionHead(config)
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
projection = self.projection_head(
torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]),
)
if not return_dict:
return projection
return ModelOutputWithProjectionEmbedding(
last_hidden_state=projection,
)
class MedICapEncoderDecoderModel(VisionEncoderDecoderModel):
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if decoder:
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
# initialize with config
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = CvtWithProjectionHead(config=config.encoder)
# Decoder:
if decoder is None:
decoder = transformers.GPT2LMHeadModel(config=config.decoder)
# Resize GPT2 token embedding to include the padding and beginning of sentence tokens:
decoder.resize_token_embeddings(config.decoder.vocab_size + 2)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
# make sure input & output embeddings is not tied
config.tie_word_embeddings = False
return cls(encoder=encoder, decoder=decoder, config=config)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
) # CvT does not support output_attentions.
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
# encoder_hidden_states = encoder_outputs[0]
# encoder_attention_mask = None
# image_features = self.encoder(images).projected_last_hidden_state
embeddings = self.decoder.transformer.wte(decoder_input_ids)
embeddings = torch.cat([encoder_outputs[0], embeddings], dim=1)
decoder_attention_mask = torch.cat(
[
torch.ones(encoder_outputs[0].shape[:-1], dtype=decoder_attention_mask.dtype, device=self.device),
decoder_attention_mask
],
dim=1,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
# encoder_hidden_states=encoder_outputs.hidden_states,
# encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
special_token_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
"""
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None
if not past_key_values:
token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids)
else:
token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids)
input_dict = {
'attention_mask': attention_mask,
'decoder_attention_mask': decoder_attention_mask,
'decoder_input_ids': decoder_inputs['input_ids'],
'decoder_token_type_ids': token_type_ids,
'encoder_outputs': encoder_outputs,
'past_key_values': decoder_inputs['past_key_values'],
'use_cache': use_cache,
}
return input_dict
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
"""
Extract token type identifiers from the token identifiers.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
token_type_id_section - token type identifier for each section.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
mbatch_size, seq_len = token_ids.shape
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
for i, j in enumerate(special_token_ids):
# Find first occurrence of special tokens that indicate the boundary between sections:
cols = (token_ids == j).int().argmax(dim=1)
rows = torch.arange(mbatch_size, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
cols += 1
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
# Indices to that correspond to the second sequence:
if rows.nelement() != 0:
ids = torch.stack([
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
y, seq_len, device=token_ids.device,
)
])
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
return token_type_ids
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
"""
Extract token type identifiers from the token identifiers if past != None.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the separation between sections.
Returns:
token_type_ids - token type identifiers.
"""
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
token_ids = token_ids[:, :-1]
for i, j in enumerate(special_token_ids):
# Find first occurrence of special token, which indicates the boundary between sections:
exists = torch.any(token_ids == j, dim=1, keepdim=True)
token_type_ids[exists] = token_type_id_sections[i + 1]
return token_type_ids
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
"""
Tokenize the reports and creates the inputs and targets for teacher forcing.
Argument/s:
findings - findings section.
impression - impression section.
return_token_type_ids - return the token type identifiers.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
"""
# Prepare the sections for the tokenizer by placing special tokens between each section:
report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
zip(findings, impression)]
# Tokenize the report:
tokenized = tokenizer(
report,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the bias between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False,
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
"""
Split the token identifiers into sections, then convert the token identifiers into strings.
Argument/s:
token_ids - token identifiers.
special_token_ids - special token identifiers that indicate the end of each section.
tokenizer - Hugging Face tokenizer.
Returns:
token_type_ids - token type identifiers.
"""
_, seq_len = token_ids.shape
# The number of sections is the same as the number of special_token_ids:
num_sections = len(special_token_ids)
sections = {k: [] for k in range(num_sections)}
for i in token_ids:
prev_col = 0
for j, k in enumerate(special_token_ids):
# The maximum sequence length was exceeded, thus no more tokens:
if prev_col >= seq_len:
sections[j].append('')
continue
# Find first occurrence of special tokens that indicate the boundary between sections:
col = (i == k).int().argmax().item()
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
# the maximum sequence length):
if col == 0:
col = seq_len
# Extract section token identifiers:
section_token_ids = i[prev_col:col]
prev_col = col
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
sections[j].append(section_string)
return tuple(sections.values())