File size: 8,088 Bytes
e02c83a 844ddf5 e02c83a 844ddf5 e02c83a 8443055 993b67f 7ce49bd 844ddf5 e02c83a 8443055 e02c83a 1b1581b e02c83a 328b9dc 00f5a69 328b9dc 00f5a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
license: mit
datasets:
- aerdincdal/CBDDO-LLM-DB-V1
language:
- tr
metrics:
- accuracy
- bertscore
- bleu
- bleurt
- brier_score
- cer
- character
- charcut_mt
- chrf
- code_eval
---
## LLama3 Tabanlı Türkçe Dil Modeli: aerdincdal/CBDDO-LLM-8B-Instruct-v1
**aerdincdal/CBDDO-LLM-8B-Instruct-v1**, LLama3 mimarisi üzerine kurulu ve 2.5 milyon satırlık veri kümesi ile özelleştirilmiş Instruction Tune yöntemi kullanılarak eğitilmiş bir Türkçe dil modelidir. Bu model, doğal dil işleme alanında çeşitli görevleri etkili bir şekilde gerçekleştirebilir. Modelin eğitimi, Türkçe dilbilgisi ve sentaks kurallarını derinlemesine kavramasını sağlamış, böylece akıcı ve doğru metinler üretmesine olanak tanımıştır.
**Modelin Öne Çıkan Özellikleri:**
- **Gelişmiş LLama3 Mimarisi:** Bu mimari, doğal dil işleme modelleri için son derece etkili ve yenilikçi bir temel oluşturur.
- **Kapsamlı Veri Seti ile Eğitim:** Model, 2.5 milyon satırlık veri seti kullanılarak eğitilmiştir, bu da onun dil yapısını ve nüanslarını mükemmel bir şekilde öğrenmesini sağlar.
- **Yüksek Performans:** Model, karmaşık dil işleme görevlerini hızlı ve etkin bir şekilde gerçekleştirebilir.
- **Çok Yönlülük:** Metin oluşturma, çeviri, soru-cevap, özetleme ve kod yazma gibi çok çeşitli görevlerde başarılıdır.
### Modelin Kullanım Adımları:
1. **Gerekli Kütüphaneleri Yükleyin:**
```bash
pip install transformers
```
2. **Modeli Test Edin:**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline
import torch
model_id = "aerdincdal/CBDDO-LLM-8B-Instruct-v1"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
text_generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
messages = [
{"role": "system", "content": "Her zaman düşünceli yanıtlar veren bir chatbot'sun."},
{"role": "user", "content": "Mona Lisa tablosu hakkında ne düşünüyorsun?"}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id
]
outputs = text_generation_pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):])
```
**Çıktı:**
```
1503'te Leonardo da Vinci tarafından resmedilen Mona Lisa, 16. yüzyılda Avrupa'da resim sanatının en ünlü eserlerinden biridir. Eski bir İtalyan aristokratı olan Lisa del Giocondo'ya benzeyen bir kadın portresidir. Bu tablo, Leonardo da Vinci'nin en ünlü eserlerinden biri olarak kabul edilir ve sanatın en iyi örneklerinden biri olarak kabul edilir. Mona Lisa'nın önemi, resim sanatının gelişiminde ve sanat tarihi boyunca etkisinin büyüklüğüne dayanmaktadır.
```
### Modelin Çeşitli Kullanım Alanları:
- **Metin Oluşturma:** Çeşitli türde ve tonda metinler oluşturabilirsiniz.
- **Metin Çevirme:** Çok dilli çeviri yetenekleri ile metinleri başka dillere çevirebilir veya tercüme edebilirsiniz.
- **Soruları Yanıtlama:** Her türlü soruyu, hatta en zorlayıcı olanları bile yanıtlayabilir.
- **Özetleme:** Uzun metinleri kısa ve öz bir şekilde özetleyebilirsiniz.
- **Kod Yazma:** Verilen isteklere uygun olarak kod üretebilirsiniz.
### Kod Yazma Örneği:
Bu örnekte, model bir metni büyük harfe çeviren bir Python fonksiyonu yazmaktadır:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline
import torch
model_id = "aerdincdal/CBDDO-LLM-8B-Instruct-v1"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
text_generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
messages = [
{"role": "system", "content": "Her zaman düşünceli yanıtlar veren bir chatbot'sun."},
{"role": "user", "content": "Python ile bir metni büyük harfe çeviren bir fonksiyon yaz."}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id
]
outputs = text_generation_pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):])
```
**Çıktı:**
```python
def metni_buyuk_harfe_cevir(metin):
"""Bir metni tümüyle büyük harfe çeviren Python fonksiyonu.
Args:
metin: Küçük harflerle yazılmış bir metin.
Returns:
Büyük harflerle yazılmış metin.
"""
return metin.upper()
# Örnek kullanım
metin = "Bu bir deneme metnidir."
buyuk_harf_metin = metni_buyuk_harfe_cevir(metin)
print(buyuk_harf_metin)
```
**Açıklama:**
Model, verilen istemi ("Python ile bir metni büyük harfe çeviren bir fonksiyon yaz.") işleyerek, açıklamaları ve dokümantasyonu içeren tam teşekküllü bir Python kodunu oluşturur. Bu fonksiyon, küçük harflerle yazılmış herhangi bir metni büyük harflere çevirebilir, böylece metinler üzerinde kolay manipülasyon sağlar.
Bu basit adımlarla, Türkçe doğal dil işleme yeteneklerinin sınırlarını zorlayabilir ve dil modelimizin size nasıl yardımcı olabileceğini keşfedebilirsiniz. Bizimle bu teknoloji yolculuğuna çıkın ve dil işleme kapasitenizi genişletin!
**BENCHMARK:**
```json
"config_general": {
"lighteval_sha": "494ee12240e716e804ae9ea834f84a2c864c07ca",
"num_few_shot_default": 0,
"num_fewshot_seeds": 1,
"override_batch_size": 1,
"max_samples": null,
"job_id": "",
"start_time": 1781075.607155059,
"end_time": 1784655.466140587,
"total_evaluation_time_secondes": "3579.858985528117",
"model_name": "aerdincdal/CBDDO-LLM-8B-Instruct-v1",
"model_sha": "84430552036c85cc6a16722b26496df4d93f3afe",
"model_dtype": "torch.bfloat16",
"model_size": "15.08 GB"
},
"results": {
"harness|arc:challenge|25": {
"acc": 0.4991467576791809,
"acc_stderr": 0.014611369529813262,
"acc_norm": 0.5460750853242321,
"acc_norm_stderr": 0.014549221105171872
},
"harness|hellaswag|10": {
"acc": 0.5552678749253137,
"acc_stderr": 0.004959204773046207,
"acc_norm": 0.7633937462656841,
"acc_norm_stderr": 0.004241299341050841
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.35,
"acc_stderr": 0.047937248544110196,
"acc_norm": 0.35,
"acc_norm_stderr": 0.047937248544110196
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6148148148148148,
"acc_stderr": 0.04203921040156279,
"acc_norm": 0.6148148148148148,
"acc_norm_stderr": 0.04203921040156279
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.5986842105263158,
"acc_stderr": 0.039889037033362836,
"acc_norm": 0.5986842105263158,
"acc_norm_stderr": 0.039889037033362836
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.62,
"acc_stderr": 0.048783173121456316,
"acc_norm": 0.62,
"acc_norm_stderr": 0.048783173121456316
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7094339622641509,
"acc_stderr": 0.02794321998933714,
"acc_norm": 0.7094339622641509,
"acc_norm_stderr": 0.02794321998933714
}
``` |