a2c-AntBulletEnv-v0 / config.json
afos950's picture
Initial commit
982bdd6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb261caa5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb261caa680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb261caa710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb261caa7a0>", "_build": "<function ActorCriticPolicy._build at 0x7fb261caa830>", "forward": "<function ActorCriticPolicy.forward at 0x7fb261caa8c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb261caa950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb261caa9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb261caaa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb261caab00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb261caab90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb261caac20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb261c9e680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684340853161490403, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPP1FUCKvim+cqomP34ipb/rCHC/WaazwPHCyz76+jM/ipasviPVb74N04Y/BD+tQJ6Hnr+QLYnA9YeAP2Os1jxWano/59vHv83jSr9ySrjAISb3PzE5sL0e+wfAMvOJvNx/lr94Avm/EMpAwCzgqb8Hdqe9kkeTP8V+yb4DKNo/JpLSP03yj8C5tR0+xLitvsHr6T7Psw0/lNsJv6vFxz9IwkU/NJDgv65UIj+O+tI85m7jP716Sbz2cCW94Jz7PpZQMT8mSso/qHF9v/4No8Dcf5a/eAL5v8n3qT4s4Km/+pI4P9giAb3d0B8/rwhTP9F9lD6fxG0/CtGTP8cXIb8ZpBE/owswvqzzOD47eEC/ULnNvsVTgT89PJe/lEKXPqqhyL+WN2c+u6NHP0v1+TwGX4g+0im1vkCTCT9gKWc+3H+Wv+KXAz/J96k+3uRAPxFiMD+McU8++sYKPyhM2z8xdlU/ZFOCwFttDT+hKYu/2bEmv6YJvr/8ETg+Sr6VP6BHu73oACPAXFYiPzzawDz170g/AjguvyWy1z4/DNo+MUHpvVxvkT84S5W/A6KlwNx/lr94Avm/yfepPizgqb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADnPrm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAphSDPQAAAAAjC/6/AAAAANzB3r0AAAAALJHqPwAAAAAnrsG9AAAAAA/A/D8AAAAA0AmDvAAAAACGKPK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANx6INgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDmDCr4AAAAAkWXwvwAAAAB1gS28AAAAAGjR9z8AAAAAGS3avAAAAAAZ9Oo/AAAAAIqIp70AAAAAb33dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMGkv7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnYiw9AAAAADQf278AAAAAfDEEvgAAAACT4gBAAAAAAGgYar0AAAAAMJPePwAAAACG/RI9AAAAAHsp4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRqZ61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkfMBPgAAAABDgeG/AAAAAB73gD0AAAAAlOL/PwAAAADwH329AAAAAGTvAEAAAAAAJjCNvQAAAAAQ8Pu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwl3vlU6xSMAWyUTegDjAF0lEdAsDGHRiPQwHV9lChoBkdAj3516/qPfmgHTegDaAhHQLAxttRNyo51fZQoaAZHQJHoMKOT7l9oB03oA2gIR0CwM7sC9ytFdX2UKGgGR0CUFDlImPYGaAdN6ANoCEdAsDhGQOnVG3V9lChoBkdAjM3IQnQY12gHTegDaAhHQLA5kTewcHZ1fZQoaAZHQJDsEokRjBloB03oA2gIR0CwOa7Z8KG+dX2UKGgGR0CPhiMlTm4iaAdN6ANoCEdAsDruK3uuzXV9lChoBkdAj7AxzzVc2WgHTegDaAhHQLBAJ912aDx1fZQoaAZHQI1+hbKRuCRoB03oA2gIR0CwQizJhfBvdX2UKGgGR0CEdDv3rUsnaAdN6ANoCEdAsEJaSGJvYXV9lChoBkdAlBYGQ0XP7mgHTegDaAhHQLBEVE+gUUR1fZQoaAZHQJKJvYNAkcFoB03oA2gIR0CwSMzSofjkdX2UKGgGR0CT86S9ugpSaAdN6ANoCEdAsEoT4ubqhXV9lChoBkdAlBTTcRDkVGgHTegDaAhHQLBKL2ZAprl1fZQoaAZHQJU8o5dWyTpoB03oA2gIR0CwS2lJQLuydX2UKGgGR0CMzp9NN8E3aAdN6ANoCEdAsFCL5tWMj3V9lChoBkdAkkyXoLXtjWgHTegDaAhHQLBSg6i0v5B1fZQoaAZHQI77wfMfRu1oB03oA2gIR0CwUrIjv/ipdX2UKGgGR0CUugmCAc1gaAdN6ANoCEdAsFSneHi3onV9lChoBkdAk1/t52QnyGgHTegDaAhHQLBZI7HQyAR1fZQoaAZHQI3g5sl9jPRoB03oA2gIR0CwWm0mICU5dX2UKGgGR0B7kTqW1MM7aAdN6ANoCEdAsFqKWUr08XV9lChoBkdAiFUdB0IToWgHTegDaAhHQLBbznv2GqR1fZQoaAZHQI8vPoRqXWxoB03oA2gIR0CwYQ2ReTmodX2UKGgGR0CTS8ig00m/aAdN6ANoCEdAsGMPnPmganV9lChoBkdAjSMPk7wKB2gHTegDaAhHQLBjPJAdGRV1fZQoaAZHQI2tnkiliz9oB03oA2gIR0CwZUWwaBI4dX2UKGgGR0CQnbpyIYWMaAdN6ANoCEdAsGnU34sVcnV9lChoBkdAj82lijL0SWgHTegDaAhHQLBr2IGhVVB1fZQoaAZHQID9qlk6LfloB03oA2gIR0CwbAUwi7kGdX2UKGgGR0CQduirDIikaAdN6ANoCEdAsG32H58BuHV9lChoBkdAijYDjrAxjGgHTegDaAhHQLB1GtknTiN1fZQoaAZHQJQa71QIldFoB03oA2gIR0Cwdupf2K2sdX2UKGgGR0CRkN5yEL6UaAdN6ANoCEdAsHcIfvF3p3V9lChoBkdAlQhhSgoPTWgHTegDaAhHQLB4RYzSCvp1fZQoaAZHQJJEu9/SYw9oB03oA2gIR0CwfKi/GlyjdX2UKGgGR0CHbe3T/hl2aAdN6ANoCEdAsH3syj59E3V9lChoBkdAkwG3tF8XvmgHTegDaAhHQLB+C0kWykd1fZQoaAZHQJOuqkBS1mdoB03oA2gIR0Cwf0kLQXyidX2UKGgGR0CTqpCYCyQgaAdN6ANoCEdAsIWaTq0MPXV9lChoBkdAj1jEFW4mTmgHTegDaAhHQLCHU717IDJ1fZQoaAZHQJJ9sona37VoB03oA2gIR0Cwh3EZaV2SdX2UKGgGR0CQ/G8IRh+faAdN6ANoCEdAsIizw+dK/XV9lChoBkdAkO3NXHR1HWgHTegDaAhHQLCNPp2ECeV1fZQoaAZHQJMQuzJIUahoB03oA2gIR0CwjorVvuPWdX2UKGgGR0CNXxtXPqs2aAdN6ANoCEdAsI6oSxqwhXV9lChoBkdAkSslVYISlGgHTegDaAhHQLCP5LIgeRx1fZQoaAZHQJABO1w5vLpoB03oA2gIR0Cwll7JbMX8dX2UKGgGR0CNm8Ixgy/LaAdN6ANoCEdAsJf/j5sTFnV9lChoBkdAkIY3VwxWUGgHTegDaAhHQLCYG3eenQ91fZQoaAZHQHybZXEIgNhoB03oA2gIR0CwmWFPWQOndX2UKGgGR0CQKzuQ6p5vaAdN6ANoCEdAsJ3IdwNsnHV9lChoBkdAlbDfcer+52gHTegDaAhHQLCfEEgW8Ad1fZQoaAZHQI7C00FbFCNoB03oA2gIR0CwnyxjjJdTdX2UKGgGR0CUtIKHO8kEaAdN6ANoCEdAsKBxUZNwi3V9lChoBkdAlYl4/qxC6mgHTegDaAhHQLCm8W7OE/V1fZQoaAZHQJIrJN/OMVFoB03oA2gIR0CwqIfbj94vdX2UKGgGR0CCRrXZGrjpaAdN6ANoCEdAsKinaoMrmXV9lChoBkdAeoppNbkfcWgHTegDaAhHQLCp6sI3R5V1fZQoaAZHQIAg6sQumJpoB03oA2gIR0Cwrl2DcuandX2UKGgGR0CSv7BqKxcFaAdN6ANoCEdAsK+h4Oc2BXV9lChoBkdAkagG/8EV32gHTegDaAhHQLCvvTkQwsZ1fZQoaAZHQJVSBEQXhwVoB03oA2gIR0CwsPmwJPZadX2UKGgGR0CShWXeFcptaAdN6ANoCEdAsLdn2g398HV9lChoBkdAjn8kg4ffXWgHTegDaAhHQLC4+OkLx7R1fZQoaAZHQJNe2OmzjWFoB03oA2gIR0CwuRV/c32mdX2UKGgGR0CULl9S/CZXaAdN6ANoCEdAsLpUjs2NvXV9lChoBkdAgGnKCpWFOGgHTegDaAhHQLC+vX+2mYV1fZQoaAZHQJIhOe+VTrFoB03oA2gIR0CwwAkF0PpZdX2UKGgGR0CTUZgMtseoaAdN6ANoCEdAsMAlb2USqXV9lChoBkdAk73EX531SWgHTegDaAhHQLDBXvtMPBl1fZQoaAZHQJAZAmplz2hoB03oA2gIR0Cwx+P0Zm7KdX2UKGgGR0Bt1Xz8P4EfaAdN6ANoCEdAsMlzD/EOy3V9lChoBkdAhFZvAoG6gGgHTegDaAhHQLDJj//Nqxl1fZQoaAZHQI4wvxWkrPNoB03oA2gIR0Cwyt8FEAo5dX2UKGgGR0CQNxMgU1yeaAdN6ANoCEdAsM9ebExZdXV9lChoBkdAk/+XbqQiimgHTegDaAhHQLDQr0yxiXp1fZQoaAZHQJF63FQ2uPpoB03oA2gIR0Cw0MxwIdELdX2UKGgGR0CVh3U5MlC1aAdN6ANoCEdAsNILw/gR9XV9lChoBkdAkZgrbL2YfGgHTegDaAhHQLDYfxRVIZt1fZQoaAZHQI+L5j+aScNoB03oA2gIR0Cw2gO+mFajdX2UKGgGR0CRmPYlY2bYaAdN6ANoCEdAsNoffyf+THV9lChoBkdAk6+BpUPxx2gHTegDaAhHQLDbXijL0SR1fZQoaAZHQJCXjXAdn01oB03oA2gIR0Cw38fSDyvtdX2UKGgGR0CQqBkOI68yaAdN6ANoCEdAsOEQkSmIkHV9lChoBkdAkV9tMwlByGgHTegDaAhHQLDhLR4QjD91fZQoaAZHQJLsMOJ+DvpoB03oA2gIR0Cw4mgkHD77dX2UKGgGR0CUngyO7xusaAdN6ANoCEdAsOjQ2rGR3nV9lChoBkdAkfleDSPU8WgHTegDaAhHQLDqbpaA4GV1fZQoaAZHQJOaLy6MBIZoB03oA2gIR0Cw6o23KB/adX2UKGgGR0CTP+Ebo8p1aAdN6ANoCEdAsOvX6guh9XV9lChoBkdAk+PIrJ8v3GgHTegDaAhHQLDwS7+T/yZ1fZQoaAZHQJN5xpcophFoB03oA2gIR0Cw8ZHhXKbKdX2UKGgGR0CTvO0lZ5iWaAdN6ANoCEdAsPGtoUSIxnV9lChoBkdAlGl+Kbayr2gHTegDaAhHQLDy5XEIgNh1fZQoaAZHQJPeF2xIJ7doB03oA2gIR0Cw+UeA/cFhdX2UKGgGR0CUr9YUFjd6aAdN6ANoCEdAsPrmH1vl2nV9lChoBkdAlFG3E61b7mgHTegDaAhHQLD7Ai1RceN1fZQoaAZHQJKtgv24/eNoB03oA2gIR0Cw/EkOEug6dX2UKGgGR0CU5nCmMwUQaAdN6ANoCEdAsQC+KWLP2XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}