a2c-PandaReachDense-v2 / config.json
afos950's picture
Initial commit
7e914ee
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb261caad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb261c9e7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684345778661349311, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmpLfPnQqPrwgAQo/mpLfPnQqPrwgAQo/mpLfPnQqPrwgAQo/mpLfPnQqPrwgAQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzjSSv7UJxb95TEi/eZdPvvTgx75nS9c/DoJgvUwewb5qNiO+3qECP5eVrz/6UsW+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACakt8+dCo+vCABCj+oWtu6tZOzOlnMeTuakt8+dCo+vCABCj+oWtu6tZOzOlnMeTuakt8+dCo+vCABCj+oWtu6tZOzOlnMeTuakt8+dCo+vCABCj+oWtu6tZOzOlnMeTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43666536 -0.0116068 0.53907967]\n [ 0.43666536 -0.0116068 0.53907967]\n [ 0.43666536 -0.0116068 0.53907967]\n [ 0.43666536 -0.0116068 0.53907967]]", "desired_goal": "[[-1.1422365 -1.5393587 -0.7824169 ]\n [-0.20272626 -0.39038813 1.6819886 ]\n [-0.05481153 -0.37718427 -0.15938726]\n [ 0.5102824 1.3717526 -0.3853987 ]]", "observation": "[[ 0.43666536 -0.0116068 0.53907967 -0.00167354 0.00137006 0.00381162]\n [ 0.43666536 -0.0116068 0.53907967 -0.00167354 0.00137006 0.00381162]\n [ 0.43666536 -0.0116068 0.53907967 -0.00167354 0.00137006 0.00381162]\n [ 0.43666536 -0.0116068 0.53907967 -0.00167354 0.00137006 0.00381162]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQzsNPdcHMzwFd4w+lPx/vQEKzr1pEZE+t12SPcR5GD7ZKic+nEDfuSeQvj1MI3k9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03448034 0.01092716 0.27434555]\n [-0.06249674 -0.10060502 0.28333595]\n [ 0.07146781 0.148902 0.16324939]\n [-0.00042582 0.09304839 0.06082468]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgUHSp1VUEcCUhpRSlIwBbJRLMowBdJRHQKjpi1fE4vN1fZQoaAZoCWgPQwhTXcDLDFsQwJSGlFKUaBVLMmgWR0Co6Q7bDdgwdX2UKGgGaAloD0MI7zmwHCEzE8CUhpRSlGgVSzJoFkdAqOiSVrylN3V9lChoBmgJaA9DCIP7AQ8M4AzAlIaUUpRoFUsyaBZHQKjoH4L1EmZ1fZQoaAZoCWgPQwjiOzHrxXAIwJSGlFKUaBVLMmgWR0Co6o2f029+dX2UKGgGaAloD0MIa378pUVdCsCUhpRSlGgVSzJoFkdAqOoRFI/Z/XV9lChoBmgJaA9DCJMYBFYOLSDAlIaUUpRoFUsyaBZHQKjplKJVKf51fZQoaAZoCWgPQwggtB6+TLQNwJSGlFKUaBVLMmgWR0Co6SH/T9bYdX2UKGgGaAloD0MIDogQV86OF8CUhpRSlGgVSzJoFkdAqOuNPYWcjXV9lChoBmgJaA9DCE7RkVz+AxLAlIaUUpRoFUsyaBZHQKjrEL3K0Up1fZQoaAZoCWgPQwi3s688SM8TwJSGlFKUaBVLMmgWR0Co6pQxFiKBdX2UKGgGaAloD0MI2/eov16hAcCUhpRSlGgVSzJoFkdAqOohWPtD2XV9lChoBmgJaA9DCJ1mgXaHFBDAlIaUUpRoFUsyaBZHQKjsljAi3Xt1fZQoaAZoCWgPQwipwMk2cAcNwJSGlFKUaBVLMmgWR0Co7Bo065oXdX2UKGgGaAloD0MIxO3QsBhVDcCUhpRSlGgVSzJoFkdAqOuduaWonHV9lChoBmgJaA9DCGjKTj+oqxDAlIaUUpRoFUsyaBZHQKjrKvTPSlZ1fZQoaAZoCWgPQwg3je21oBcVwJSGlFKUaBVLMmgWR0Co7YpaaCtjdX2UKGgGaAloD0MI/Z/DfHkhHMCUhpRSlGgVSzJoFkdAqO0N3Sro4nV9lChoBmgJaA9DCCjVPh2PCRzAlIaUUpRoFUsyaBZHQKjskVeruIB1fZQoaAZoCWgPQwjrqkAtBk8NwJSGlFKUaBVLMmgWR0Co7B6AWi1zdX2UKGgGaAloD0MIyM9GrptSHMCUhpRSlGgVSzJoFkdAqO6UfcN6PnV9lChoBmgJaA9DCBBc5QmEXRPAlIaUUpRoFUsyaBZHQKjuF/jsD4h1fZQoaAZoCWgPQwgR4zWv6qwZwJSGlFKUaBVLMmgWR0Co7Zt2LYPHdX2UKGgGaAloD0MIvw8HCVH+DMCUhpRSlGgVSzJoFkdAqO0on8baRXV9lChoBmgJaA9DCDhKXp1jQAnAlIaUUpRoFUsyaBZHQKjvprVvuPV1fZQoaAZoCWgPQwgLKqp+pbMEwJSGlFKUaBVLMmgWR0Co7yr0Bfa6dX2UKGgGaAloD0MISiU8oddPE8CUhpRSlGgVSzJoFkdAqO6u96C17nV9lChoBmgJaA9DCIDSUKOQZB3AlIaUUpRoFUsyaBZHQKjuPGy5Zr51fZQoaAZoCWgPQwip91ROe4oKwJSGlFKUaBVLMmgWR0Co8Ue4smOVdX2UKGgGaAloD0MIDfyohv1+D8CUhpRSlGgVSzJoFkdAqPDMEovzv3V9lChoBmgJaA9DCM/cQ8L3vgXAlIaUUpRoFUsyaBZHQKjwUGL1mJ51fZQoaAZoCWgPQwjuemmKAKcBwJSGlFKUaBVLMmgWR0Co795VOsT4dX2UKGgGaAloD0MIAU9auKxCAcCUhpRSlGgVSzJoFkdAqPL/eUILPXV9lChoBmgJaA9DCMfzGVBvRv+/lIaUUpRoFUsyaBZHQKjyg6d1+y91fZQoaAZoCWgPQwhyUMJM2z8GwJSGlFKUaBVLMmgWR0Co8gfVRUFTdX2UKGgGaAloD0MI5QrvchEfF8CUhpRSlGgVSzJoFkdAqPGVzOoo/nV9lChoBmgJaA9DCG77HvXX6w7AlIaUUpRoFUsyaBZHQKj0ogieNDN1fZQoaAZoCWgPQwippE5AE0EEwJSGlFKUaBVLMmgWR0Co9CZvDP4VdX2UKGgGaAloD0MIzTy5pkCmEMCUhpRSlGgVSzJoFkdAqPOqptJnQXV9lChoBmgJaA9DCLFqEOZ2L/e/lIaUUpRoFUsyaBZHQKjzOI9kjHJ1fZQoaAZoCWgPQwizJasi3AQJwJSGlFKUaBVLMmgWR0Co9l2T5ftydX2UKGgGaAloD0MI6+bib3uiEsCUhpRSlGgVSzJoFkdAqPXh7NSqEXV9lChoBmgJaA9DCGADIsSV0wnAlIaUUpRoFUsyaBZHQKj1Zjc2zfJ1fZQoaAZoCWgPQwg9gbBTrBr/v5SGlFKUaBVLMmgWR0Co9PQyyleodX2UKGgGaAloD0MI0xdCzvtfAMCUhpRSlGgVSzJoFkdAqPgONaQmu3V9lChoBmgJaA9DCGLAkqtYbBLAlIaUUpRoFUsyaBZHQKj3kp71Iy11fZQoaAZoCWgPQwhJSQ9Dq/MEwJSGlFKUaBVLMmgWR0Co9xcB2fTTdX2UKGgGaAloD0MItaSjHMxWEMCUhpRSlGgVSzJoFkdAqPalCmdiD3V9lChoBmgJaA9DCGSRJt4BXgHAlIaUUpRoFUsyaBZHQKj5xMSK3ux1fZQoaAZoCWgPQwix+bg2VIwAwJSGlFKUaBVLMmgWR0Co+UkPMB6sdX2UKGgGaAloD0MISwUVVb/SAMCUhpRSlGgVSzJoFkdAqPjNhw2l23V9lChoBmgJaA9DCGtkV1pGSgTAlIaUUpRoFUsyaBZHQKj4W34sVcl1fZQoaAZoCWgPQwiVmdL6W4IJwJSGlFKUaBVLMmgWR0Co+3VHOKO1dX2UKGgGaAloD0MISiandoZJBcCUhpRSlGgVSzJoFkdAqPr5le4TbnV9lChoBmgJaA9DCDsA4q5ehQ7AlIaUUpRoFUsyaBZHQKj6fe3QUpN1fZQoaAZoCWgPQwivCz84nzoCwJSGlFKUaBVLMmgWR0Co+gvkaMrFdX2UKGgGaAloD0MIqFFIMqsHFcCUhpRSlGgVSzJoFkdAqPzvnfVI7XV9lChoBmgJaA9DCGSyuP/I9APAlIaUUpRoFUsyaBZHQKj8cyNXHR11fZQoaAZoCWgPQwggf2lRn6QRwJSGlFKUaBVLMmgWR0Co+/a24NI9dX2UKGgGaAloD0MIho+IKZFkAMCUhpRSlGgVSzJoFkdAqPuEOqebu3V9lChoBmgJaA9DCAh3Z+22y/q/lIaUUpRoFUsyaBZHQKj99ZgXuVp1fZQoaAZoCWgPQwgVArnEkUcJwJSGlFKUaBVLMmgWR0Co/XkbgjyGdX2UKGgGaAloD0MIHjNQGf8+DcCUhpRSlGgVSzJoFkdAqPz8nVoYenV9lChoBmgJaA9DCBMM5xpmCA7AlIaUUpRoFUsyaBZHQKj8id92HL11fZQoaAZoCWgPQwgecF0xI9wFwJSGlFKUaBVLMmgWR0Co/uucMEzPdX2UKGgGaAloD0MItABtq1knEMCUhpRSlGgVSzJoFkdAqP5vz6JqI3V9lChoBmgJaA9DCP2GiQYp+ADAlIaUUpRoFUsyaBZHQKj99B55Z8t1fZQoaAZoCWgPQwjVko5yMPsDwJSGlFKUaBVLMmgWR0Co/YIHcDbKdX2UKGgGaAloD0MItYmT+x0KHcCUhpRSlGgVSzJoFkdAqP/hMcp9Z3V9lChoBmgJaA9DCIrMXODyqBLAlIaUUpRoFUsyaBZHQKj/ZK4hEBt1fZQoaAZoCWgPQwhighq+hbX9v5SGlFKUaBVLMmgWR0Co/ugvlEJCdX2UKGgGaAloD0MI0O6QYoAEG8CUhpRSlGgVSzJoFkdAqP51VcUuc3V9lChoBmgJaA9DCFbYDHBBNv+/lIaUUpRoFUsyaBZHQKkA6Y6XBxh1fZQoaAZoCWgPQwjLEwg7xeoXwJSGlFKUaBVLMmgWR0CpAG0Q9RrKdX2UKGgGaAloD0MIEr73N2gvBcCUhpRSlGgVSzJoFkdAqP/wk5ZKWnV9lChoBmgJaA9DCEzBGmfTkQ/AlIaUUpRoFUsyaBZHQKj/fbzK9wp1fZQoaAZoCWgPQwgEq+rld3oIwJSGlFKUaBVLMmgWR0CpAfBEroW6dX2UKGgGaAloD0MIB7Ezhc4rEcCUhpRSlGgVSzJoFkdAqQFzxG2CunV9lChoBmgJaA9DCA4WTtL8MQrAlIaUUpRoFUsyaBZHQKkA94h2W6d1fZQoaAZoCWgPQwj3rkFfepsWwJSGlFKUaBVLMmgWR0CpAITho/RmdX2UKGgGaAloD0MIbk4lA0BVBMCUhpRSlGgVSzJoFkdAqQLzqD9OynV9lChoBmgJaA9DCGPwMO2buwHAlIaUUpRoFUsyaBZHQKkCdyLhrFh1fZQoaAZoCWgPQwgtsTIa+WwfwJSGlFKUaBVLMmgWR0CpAfqebutwdX2UKGgGaAloD0MI4GWGjbI+EcCUhpRSlGgVSzJoFkdAqQGH029+PXV9lChoBmgJaA9DCC6QoPgxNhfAlIaUUpRoFUsyaBZHQKkD7LGJemh1fZQoaAZoCWgPQwhi9UcYBgwcwJSGlFKUaBVLMmgWR0CpA3AxJul5dX2UKGgGaAloD0MIccrcfCPKFsCUhpRSlGgVSzJoFkdAqQLzvRZ2ZHV9lChoBmgJaA9DCFSPNLitTQjAlIaUUpRoFUsyaBZHQKkCgTNdJJ51fZQoaAZoCWgPQwi3mnXG9wUPwJSGlFKUaBVLMmgWR0CpBOF5nlGPdX2UKGgGaAloD0MIAwtgysBhCsCUhpRSlGgVSzJoFkdAqQRlKIznBHV9lChoBmgJaA9DCKLvbmWJ7hfAlIaUUpRoFUsyaBZHQKkD6L2HtWx1fZQoaAZoCWgPQwg25J8ZxFcVwJSGlFKUaBVLMmgWR0CpA3YbKifydX2UKGgGaAloD0MIuAIK9fQxBsCUhpRSlGgVSzJoFkdAqQXd2ki2UnV9lChoBmgJaA9DCAvT9xqCExHAlIaUUpRoFUsyaBZHQKkFYXdj5Kx1fZQoaAZoCWgPQwhrgT0mUnoAwJSGlFKUaBVLMmgWR0CpBOUMPSUkdX2UKGgGaAloD0MIi4nNx7WhDsCUhpRSlGgVSzJoFkdAqQRyjYZl4HV9lChoBmgJaA9DCJwU5j3O5BLAlIaUUpRoFUsyaBZHQKkG23pfQa91fZQoaAZoCWgPQwj4qpUJv/QGwJSGlFKUaBVLMmgWR0CpBl72lEZ0dX2UKGgGaAloD0MIXTP5ZpvbBcCUhpRSlGgVSzJoFkdAqQXidxyXD3V9lChoBmgJaA9DCJRKeEKvf/q/lIaUUpRoFUsyaBZHQKkFb71qWTp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}