File size: 3,082 Bytes
ab5b9cd
 
 
 
 
cee0969
ab5b9cd
 
 
 
 
 
 
 
 
 
 
 
cee0969
ab5b9cd
 
 
 
 
 
 
cee0969
ab5b9cd
 
 
 
 
 
 
cee0969
ab5b9cd
cee0969
 
ab5b9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb3b38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab5b9cd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-arsenic
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: indian_food_images
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9993451211525868
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-arsenic

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0048
- Accuracy: 0.9993

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.1855        | 0.1848 | 100  | 0.1918          | 0.9312   |
| 0.1792        | 0.3697 | 200  | 0.1740          | 0.9365   |
| 0.1688        | 0.5545 | 300  | 0.0782          | 0.9692   |
| 0.1238        | 0.7394 | 400  | 0.2158          | 0.9227   |
| 0.0969        | 0.9242 | 500  | 0.0449          | 0.9843   |
| 0.0326        | 1.1091 | 600  | 0.1554          | 0.9574   |
| 0.1057        | 1.2939 | 700  | 0.0845          | 0.9738   |
| 0.0805        | 1.4787 | 800  | 0.0712          | 0.9823   |
| 0.0889        | 1.6636 | 900  | 0.0718          | 0.9797   |
| 0.0503        | 1.8484 | 1000 | 0.0251          | 0.9935   |
| 0.0225        | 2.0333 | 1100 | 0.0177          | 0.9967   |
| 0.0049        | 2.2181 | 1200 | 0.0246          | 0.9921   |
| 0.0152        | 2.4030 | 1300 | 0.0083          | 0.9987   |
| 0.08          | 2.5878 | 1400 | 0.0214          | 0.9941   |
| 0.0043        | 2.7726 | 1500 | 0.0069          | 0.9980   |
| 0.0501        | 2.9575 | 1600 | 0.0151          | 0.9967   |
| 0.0186        | 3.1423 | 1700 | 0.0078          | 0.9974   |
| 0.0033        | 3.3272 | 1800 | 0.0139          | 0.9961   |
| 0.0023        | 3.5120 | 1900 | 0.0076          | 0.9987   |
| 0.0054        | 3.6969 | 2000 | 0.0048          | 0.9993   |
| 0.0168        | 3.8817 | 2100 | 0.0066          | 0.9987   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1