--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-arsenic results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9993451211525868 --- # finetuned-arsenic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2214 | 0.1848 | 100 | 0.2314 | 0.9247 | | 0.2189 | 0.3697 | 200 | 0.1578 | 0.9404 | | 0.2104 | 0.5545 | 300 | 0.1063 | 0.9673 | | 0.2138 | 0.7394 | 400 | 0.0998 | 0.9718 | | 0.2149 | 0.9242 | 500 | 0.0644 | 0.9790 | | 0.1439 | 1.1091 | 600 | 0.0757 | 0.9646 | | 0.1038 | 1.2939 | 700 | 0.1316 | 0.9574 | | 0.0458 | 1.4787 | 800 | 0.0282 | 0.9902 | | 0.0078 | 1.6636 | 900 | 0.1226 | 0.9718 | | 0.0286 | 1.8484 | 1000 | 0.0584 | 0.9856 | | 0.0493 | 2.0333 | 1100 | 0.1419 | 0.9633 | | 0.0028 | 2.2181 | 1200 | 0.0232 | 0.9948 | | 0.0292 | 2.4030 | 1300 | 0.0171 | 0.9935 | | 0.0402 | 2.5878 | 1400 | 0.0061 | 0.9987 | | 0.043 | 2.7726 | 1500 | 0.0497 | 0.9889 | | 0.0224 | 2.9575 | 1600 | 0.0062 | 0.9987 | | 0.0021 | 3.1423 | 1700 | 0.0092 | 0.9974 | | 0.0025 | 3.3272 | 1800 | 0.0041 | 0.9987 | | 0.0018 | 3.5120 | 1900 | 0.0054 | 0.9974 | | 0.0034 | 3.6969 | 2000 | 0.0052 | 0.9980 | | 0.0072 | 3.8817 | 2100 | 0.0026 | 0.9993 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1