--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-arsenic results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9986902423051736 --- # finetuned-arsenic This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0039 - Accuracy: 0.9987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3535 | 0.1848 | 100 | 0.2896 | 0.8762 | | 0.1869 | 0.3697 | 200 | 0.1380 | 0.9574 | | 0.1594 | 0.5545 | 300 | 0.1052 | 0.9679 | | 0.117 | 0.7394 | 400 | 0.0502 | 0.9836 | | 0.0796 | 0.9242 | 500 | 0.0881 | 0.9673 | | 0.0795 | 1.1091 | 600 | 0.0698 | 0.9751 | | 0.0644 | 1.2939 | 700 | 0.0342 | 0.9895 | | 0.054 | 1.4787 | 800 | 0.0344 | 0.9882 | | 0.0776 | 1.6636 | 900 | 0.0292 | 0.9915 | | 0.0143 | 1.8484 | 1000 | 0.0242 | 0.9928 | | 0.0597 | 2.0333 | 1100 | 0.0132 | 0.9954 | | 0.0285 | 2.2181 | 1200 | 0.0263 | 0.9928 | | 0.0349 | 2.4030 | 1300 | 0.0070 | 0.9980 | | 0.0164 | 2.5878 | 1400 | 0.0067 | 0.9987 | | 0.0058 | 2.7726 | 1500 | 0.0119 | 0.9954 | | 0.0013 | 2.9575 | 1600 | 0.0066 | 0.9987 | | 0.0028 | 3.1423 | 1700 | 0.0052 | 0.9987 | | 0.0028 | 3.3272 | 1800 | 0.0052 | 0.9987 | | 0.0244 | 3.5120 | 1900 | 0.0264 | 0.9928 | | 0.002 | 3.6969 | 2000 | 0.0025 | 0.9993 | | 0.0054 | 3.8817 | 2100 | 0.0039 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1