afrias5 commited on
Commit
2bea64d
1 Parent(s): 87a164c

End of training

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3-70B
3
+ library_name: peft
4
+ license: llama3
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: Allama370b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: meta-llama/Meta-Llama-3-70B
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: afrias5/FinUpTagsNoTestNoExNew
31
+ type: alpaca
32
+ field: text
33
+
34
+ dataset_prepared_path: Allama3dataset
35
+ val_set_size: 0
36
+ output_dir: models/Allama370b #change
37
+ # lora_model_dir: models/llama370b
38
+ # auto_resume_from_checkpoints: true
39
+ sequence_len: 4096
40
+ sample_packing: true
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: False
43
+ adapter: lora
44
+ lora_r: 4
45
+ lora_alpha: 16
46
+ lora_dropout: 0.05
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+ lora_modules_to_save:
50
+ - embed_tokens
51
+ - lm_head
52
+
53
+ wandb_project: 'llama3run'
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_run_id:
57
+ wandb_name: 'A70b' #change
58
+ wandb_log_model:
59
+
60
+ gradient_accumulation_steps: 4
61
+ micro_batch_size: 1
62
+ num_epochs: 4
63
+ optimizer: adamw_torch
64
+ lr_scheduler: cosine
65
+ learning_rate: 0.0002
66
+
67
+ train_on_inputs: false
68
+ group_by_length: false
69
+ bf16: true
70
+ fp16:
71
+ tf32: false
72
+ hub_model_id: afrias5/Allama370b
73
+ gradient_checkpointing: true
74
+ local_rank:
75
+ logging_steps: 1
76
+ xformers_attention:
77
+ flash_attention: true
78
+ s2_attention:
79
+ warmup_steps: 10
80
+ # eval_steps: 300
81
+ saves_per_epoch: 1
82
+ save_total_limit: 12
83
+ debug:
84
+ deepspeed: deepspeed_configs/zero3_bf16.json
85
+ weight_decay: 0.0
86
+ fsdp:
87
+ fsdp_config:
88
+ special_tokens:
89
+ pad_token: <|end_of_text|>
90
+
91
+
92
+
93
+
94
+
95
+
96
+ ```
97
+
98
+ </details><br>
99
+
100
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/afrias5/llama3run/runs/0xrylxx1)
101
+ # Allama370b
102
+
103
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on the None dataset.
104
+
105
+ ## Model description
106
+
107
+ More information needed
108
+
109
+ ## Intended uses & limitations
110
+
111
+ More information needed
112
+
113
+ ## Training and evaluation data
114
+
115
+ More information needed
116
+
117
+ ## Training procedure
118
+
119
+ ### Training hyperparameters
120
+
121
+ The following hyperparameters were used during training:
122
+ - learning_rate: 0.0002
123
+ - train_batch_size: 1
124
+ - eval_batch_size: 1
125
+ - seed: 42
126
+ - distributed_type: multi-GPU
127
+ - num_devices: 2
128
+ - gradient_accumulation_steps: 4
129
+ - total_train_batch_size: 8
130
+ - total_eval_batch_size: 2
131
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
132
+ - lr_scheduler_type: cosine
133
+ - lr_scheduler_warmup_steps: 10
134
+ - num_epochs: 4
135
+
136
+ ### Training results
137
+
138
+
139
+
140
+ ### Framework versions
141
+
142
+ - PEFT 0.11.1
143
+ - Transformers 4.42.4
144
+ - Pytorch 2.2.2+cu121
145
+ - Datasets 2.19.1
146
+ - Tokenizers 0.19.1