chad-brouze
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,109 +1,115 @@
|
|
|
|
1 |
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
|
|
|
2 |
library_name: peft
|
3 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: llama-8b-south-africa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
model_description:
|
8 |
-
|
9 |
-
|
10 |
-
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the generator dataset.
|
11 |
-
[Alapa Cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) translated into Xhose, Zulu, Tswana, Northern Sotho and Afrikaans using machine translation.
|
12 |
|
13 |
-
|
14 |
-
The model could only be evaluated in Xhosa and Zulu due to Iroko language availability. Its aim is to show cross-lingual transfer can be achieved at a low cost. Translation cost roughly $370 per language and training cost roughly $15 using an Akash Compute Network GPU.
|
15 |
-
|
16 |
-
intended_use: This model is intended to be used for research.
|
17 |
-
|
18 |
-
evaluation_results:
|
19 |
-
- task:
|
20 |
-
type: text-generation
|
21 |
-
name: African Language Evaluation
|
22 |
-
dataset:
|
23 |
-
name: afrimgsm_direct_xho
|
24 |
-
type: text-classification
|
25 |
-
split: test
|
26 |
-
metrics:
|
27 |
-
- name: Accuracy
|
28 |
-
type: accuracy
|
29 |
-
value: 0.02
|
30 |
-
- name: Dataset
|
31 |
-
type: dataset
|
32 |
-
value: MGS-Xho Direct
|
33 |
-
|
34 |
-
- task:
|
35 |
-
type: text-generation
|
36 |
-
name: African Language Evaluation
|
37 |
-
dataset:
|
38 |
-
name: afrimmlu_direct_xho
|
39 |
-
type: text-classification
|
40 |
-
split: test
|
41 |
-
metrics:
|
42 |
-
- name: Accuracy
|
43 |
-
type: accuracy
|
44 |
-
value: 0.29
|
45 |
-
- name: Dataset
|
46 |
-
type: dataset
|
47 |
-
value: MMLU-Xho Direct
|
48 |
-
|
49 |
-
- task:
|
50 |
-
type: text-generation
|
51 |
-
name: African Language Evaluation
|
52 |
-
dataset:
|
53 |
-
name: afrixnli_en_direct_xho
|
54 |
-
type: text-classification
|
55 |
-
split: test
|
56 |
-
metrics:
|
57 |
-
- name: Accuracy
|
58 |
-
type: accuracy
|
59 |
-
value: 0.44
|
60 |
-
- name: Dataset
|
61 |
-
type: dataset
|
62 |
-
value: XNLI-Xho Direct
|
63 |
-
|
64 |
-
- task:
|
65 |
-
type: text-generation
|
66 |
-
name: African Language Evaluation
|
67 |
-
dataset:
|
68 |
-
name: afrimgsm_direct_zul
|
69 |
-
type: text-classification
|
70 |
-
split: test
|
71 |
-
metrics:
|
72 |
-
- name: Accuracy
|
73 |
-
type: accuracy
|
74 |
-
value: 0.045
|
75 |
-
- name: Dataset
|
76 |
-
type: dataset
|
77 |
-
value: MGS-Zul Direct
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
type: text-classification
|
100 |
-
split: test
|
101 |
-
metrics:
|
102 |
-
- name: Accuracy
|
103 |
-
type: accuracy
|
104 |
-
value: 0.43
|
105 |
-
- name: Dataset
|
106 |
-
type: dataset
|
107 |
-
value: XNLI-Zul Direct
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
3 |
+
datasets:
|
4 |
+
- generator
|
5 |
library_name: peft
|
6 |
+
license: apache-2.0
|
7 |
+
tags:
|
8 |
+
- trl
|
9 |
+
- sft
|
10 |
+
- generated_from_trainer
|
11 |
+
- african-languages
|
12 |
model-index:
|
13 |
- name: llama-8b-south-africa
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: text-generation
|
17 |
+
name: African Language Evaluation
|
18 |
+
dataset:
|
19 |
+
name: afrimgsm_direct_xho
|
20 |
+
type: text-classification
|
21 |
+
split: test
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.02
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
name: African Language Evaluation
|
29 |
+
dataset:
|
30 |
+
name: afrimgsm_direct_zul
|
31 |
+
type: text-classification
|
32 |
+
split: test
|
33 |
+
metrics:
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.045
|
37 |
+
- task:
|
38 |
+
type: text-generation
|
39 |
+
name: African Language Evaluation
|
40 |
+
dataset:
|
41 |
+
name: afrimmlu_direct_xho
|
42 |
+
type: text-classification
|
43 |
+
split: test
|
44 |
+
metrics:
|
45 |
+
- name: Accuracy
|
46 |
+
type: accuracy
|
47 |
+
value: 0.29
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
name: African Language Evaluation
|
51 |
+
dataset:
|
52 |
+
name: afrimmlu_direct_zul
|
53 |
+
type: text-classification
|
54 |
+
split: test
|
55 |
+
metrics:
|
56 |
+
- name: Accuracy
|
57 |
+
type: accuracy
|
58 |
+
value: 0.29
|
59 |
+
- task:
|
60 |
+
type: text-generation
|
61 |
+
name: African Language Evaluation
|
62 |
+
dataset:
|
63 |
+
name: afrixnli_en_direct_xho
|
64 |
+
type: text-classification
|
65 |
+
split: test
|
66 |
+
metrics:
|
67 |
+
- name: Accuracy
|
68 |
+
type: accuracy
|
69 |
+
value: 0.44
|
70 |
+
- task:
|
71 |
+
type: text-generation
|
72 |
+
name: African Language Evaluation
|
73 |
+
dataset:
|
74 |
+
name: afrixnli_en_direct_zul
|
75 |
+
type: text-classification
|
76 |
+
split: test
|
77 |
+
metrics:
|
78 |
+
- name: Accuracy
|
79 |
+
type: accuracy
|
80 |
+
value: 0.43
|
81 |
|
82 |
+
model_description: |
|
83 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the generator dataset.
|
84 |
+
[Alpaca Cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) translated into Xhose, Zulu, Tswana, Northern Sotho and Afrikaans using machine translation.
|
|
|
|
|
85 |
|
86 |
+
The model could only be evaluated in Xhosa and Zulu due to Iroko language availability. Its aim is to show cross-lingual transfer can be achieved at a low cost. Translation cost roughly $370 per language and training cost roughly $15 using an Akash Compute Network GPU.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
training_details:
|
89 |
+
loss: 1.0571
|
90 |
+
hyperparameters:
|
91 |
+
learning_rate: 0.0002
|
92 |
+
train_batch_size: 4
|
93 |
+
eval_batch_size: 8
|
94 |
+
seed: 42
|
95 |
+
distributed_type: multi-GPU
|
96 |
+
gradient_accumulation_steps: 2
|
97 |
+
total_train_batch_size: 8
|
98 |
+
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
99 |
+
lr_scheduler_type: cosine
|
100 |
+
lr_scheduler_warmup_ratio: 0.1
|
101 |
+
num_epochs: 1
|
102 |
|
103 |
+
training_results:
|
104 |
+
final_loss: 1.0959
|
105 |
+
epochs: 0.9999
|
106 |
+
steps: 5596
|
107 |
+
validation_loss: 1.0571
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
framework_versions:
|
110 |
+
peft: 0.12.0
|
111 |
+
transformers: 4.44.2
|
112 |
+
pytorch: 2.4.1+cu121
|
113 |
+
datasets: 3.0.0
|
114 |
+
tokenizers: 0.19.1
|
115 |
+
---
|