File size: 3,309 Bytes
5cb67c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
base_model: malhajar/phi-2-meditron
datasets:
- epfl-llm/guidelines
inference: false
language:
- en
license: ms-pl
model_creator: malhajar
model_name: phi-2-meditron
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- Medicine
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# malhajar/phi-2-meditron-GGUF
Quantized GGUF model files for [phi-2-meditron](https://huggingface.co/malhajar/phi-2-meditron) from [malhajar](https://huggingface.co/malhajar)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [phi-2-meditron.fp16.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.fp16.gguf) | fp16 | 5.56 GB |
| [phi-2-meditron.q2_k.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q2_k.gguf) | q2_k | 1.17 GB |
| [phi-2-meditron.q3_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q3_k_m.gguf) | q3_k_m | 1.48 GB |
| [phi-2-meditron.q4_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q4_k_m.gguf) | q4_k_m | 1.79 GB |
| [phi-2-meditron.q5_k_m.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q5_k_m.gguf) | q5_k_m | 2.07 GB |
| [phi-2-meditron.q6_k.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q6_k.gguf) | q6_k | 2.29 GB |
| [phi-2-meditron.q8_0.gguf](https://huggingface.co/afrideva/phi-2-meditron-GGUF/resolve/main/phi-2-meditron.q8_0.gguf) | q8_0 | 2.96 GB |
## Original Model Card:
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
phi-2-meditron is a finetuned version of [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) using SFT Training on the Meditron Dataset.
This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-7b) for more info)
### Model Description
- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/)
- **Language(s) (NLP):** English
- **Finetuned from model:** [`microsoft/phi-2`](https://huggingface.co/microsoft/phi-2)
### Prompt Template
```
### Instruction:
<prompt> (without the <>)
### Response:
```
## How to Get Started with the Model
Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/phi-2-meditron"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code= True,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question}
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
top_p=0.95)
response = tokenizer.decode(output[0])
print(response)
``` |