Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: PipableAI/pip-sql-1.3b
|
3 |
+
datasets:
|
4 |
+
- PipableAI/pip-txt-to-sql-spider-bird-dataset
|
5 |
+
inference: true
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
license: apache-2.0
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
model_creator: PipableAI
|
13 |
+
model_name: pip-sql-1.3b
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
quantized_by: afrideva
|
16 |
+
tags:
|
17 |
+
- sql
|
18 |
+
- code
|
19 |
+
- text2sql
|
20 |
+
- instruction_tuned
|
21 |
+
- basemodel
|
22 |
+
- jax
|
23 |
+
- pytorch
|
24 |
+
- text-generation-inference
|
25 |
+
- gguf
|
26 |
+
- ggml
|
27 |
+
- quantized
|
28 |
+
widget:
|
29 |
+
- example_title: example
|
30 |
+
text: '<schema>CREATE TABLE system(JobID: String,GID: String, UID: String, Start:Time(yyyy/mm/dd),
|
31 |
+
End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS: Number,NNodes: Number, NodeList:
|
32 |
+
List, State:String, Timelimit: Time);</schema><question>Get UID and job id for
|
33 |
+
Jobs that started on Jan 20 , 2023 ended on feb 14 2023 and has job id 20</question><sql>'
|
34 |
+
---
|
35 |
+
|
36 |
+
# pip-sql-1.3b-GGUF
|
37 |
+
|
38 |
+
Quantized GGUF model files for [pip-sql-1.3b](https://huggingface.co/PipableAI/pip-sql-1.3b) from [PipableAI](https://huggingface.co/PipableAI)
|
39 |
+
|
40 |
+
## Original Model Card:
|
41 |
+
|
42 |
+
# pipSQL-1.3b
|
43 |
+
|
44 |
+
[pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
|
45 |
+
|
46 |
+
[colab_notebook](https://colab.research.google.com/drive/1insSxvc3jjAXe0zmdIjmbG3ttb5mpRgQ?usp=sharing)
|
47 |
+
|
48 |
+
## What have we built?
|
49 |
+
A 1.3 bn SQL model that outperforms most SQL expert models and chatgpt on popular benchmarks.
|
50 |
+
This is a distilled model built on the deepseek base model.
|
51 |
+
Please refer to https://huggingface.co/PipableAI/pip-library-etl-1.3b for our state of the art model.
|
52 |
+
## How we built it?
|
53 |
+
|
54 |
+
We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
|
55 |
+
Loss behaviour in the set up mentioned above -
|
56 |
+
|
57 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/I80Ru1r4thoYrLagIWALa.png)
|
58 |
+
|
59 |
+
## Benchmarking :
|
60 |
+
For benchmarking purposes we are using Semantic Evaluation for Text-to-SQL with
|
61 |
+
Distilled Test Suites, an officially accepted evaluation framework for Spider, SParC, and CoSQL which was proposed by a research team of Yale and Berkeley.
|
62 |
+
The benchmark contains 2200 test data points
|
63 |
+
Here is the link to run the evaluation:
|
64 |
+
|
65 |
+
|
66 |
+
[Test Suite SQL Eval](https://github.com/taoyds/test-suite-sql-eval)
|
67 |
+
|
68 |
+
|model|easy|medium|hard|extra|
|
69 |
+
|-----|----|------|----|-----|
|
70 |
+
|sqlcoder-7b-2|72.0|58.0|40.6|37.3|
|
71 |
+
|pipSQL-1.3b|78.5|57.5|42.1|28.3|
|
72 |
+
|pipSQL-7b|63.0|40.0|30.2|25.0|
|
73 |
+
|sqlcoder-7b|60.6|48.2|28.3|20.4|
|
74 |
+
|gpt-3.5|58.8|44.7|31.0|28.4|
|
75 |
+
|
76 |
+
We have also benchmarked it on defog eval.
|
77 |
+
It contains 200 test data points handpicked by defog team.
|
78 |
+
Here is the link to it:
|
79 |
+
|
80 |
+
|
81 |
+
[Defog SQL-Eval](https://github.com/defog-ai/sql-eval)
|
82 |
+
These are the results -
|
83 |
+
|
84 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d32c6b921678fdc9de3302/fFeLSEYBNpQk_JWjFsF5M.png)
|
85 |
+
|
86 |
+
## License
|
87 |
+
The model is open source under apache 2.0. License
|
88 |
+
|
89 |
+
## Usage
|
90 |
+
|
91 |
+
### Installation
|
92 |
+
|
93 |
+
```bash
|
94 |
+
pip install transformers
|
95 |
+
```
|
96 |
+
|
97 |
+
### Prompt
|
98 |
+
```python
|
99 |
+
prompt = f"""<schema>{schema}</schema>
|
100 |
+
<question>{question}</question>
|
101 |
+
<sql>"""
|
102 |
+
```
|
103 |
+
|
104 |
+
### PyTorch
|
105 |
+
```python
|
106 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
107 |
+
device = "cuda"
|
108 |
+
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b")
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
|
110 |
+
|
111 |
+
inputs = tokenizer(text, return_tensors="pt")
|
112 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
113 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
114 |
+
```
|
115 |
+
|
116 |
+
### Flax
|
117 |
+
```python
|
118 |
+
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer
|
119 |
+
device = "cuda"
|
120 |
+
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pip-sql-1.3b",from_pt=True)
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-sql-1.3b")
|
122 |
+
|
123 |
+
inputs = tokenizer(text, return_tensors="jax")
|
124 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
125 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
|
126 |
+
```
|
127 |
+
|
128 |
+
## Examples
|
129 |
+
|
130 |
+
### Schema
|
131 |
+
```sql
|
132 |
+
CREATE TABLE Products (
|
133 |
+
product_id number,
|
134 |
+
parent_product_id number,
|
135 |
+
product_name text,
|
136 |
+
product_price number,
|
137 |
+
product_color text,
|
138 |
+
product_size text,
|
139 |
+
product_description text);
|
140 |
+
|
141 |
+
CREATE TABLE Customers (
|
142 |
+
customer_id number,
|
143 |
+
gender_code text,
|
144 |
+
customer_first_name text,
|
145 |
+
customer_middle_initial text,
|
146 |
+
customer_last_name text,
|
147 |
+
email_address text,
|
148 |
+
login_name text,
|
149 |
+
login_password text,
|
150 |
+
phone_number text,
|
151 |
+
address_line_1 text,
|
152 |
+
town_city text,
|
153 |
+
county text,
|
154 |
+
country text);
|
155 |
+
|
156 |
+
CREATE TABLE Customer_Payment_Methods (
|
157 |
+
customer_id number,
|
158 |
+
payment_method_code text);
|
159 |
+
|
160 |
+
CREATE TABLE Invoices (
|
161 |
+
invoice_number number,
|
162 |
+
invoice_status_code text,
|
163 |
+
invoice_date time);
|
164 |
+
|
165 |
+
CREATE TABLE Orders (
|
166 |
+
order_id number,
|
167 |
+
customer_id number,
|
168 |
+
order_status_code text,
|
169 |
+
date_order_placed time);
|
170 |
+
|
171 |
+
CREATE TABLE Order_Items (
|
172 |
+
order_item_id number,
|
173 |
+
product_id number,
|
174 |
+
order_id number,
|
175 |
+
order_item_status_code text);
|
176 |
+
|
177 |
+
CREATE TABLE Shipments (
|
178 |
+
shipment_id number,
|
179 |
+
order_id number,
|
180 |
+
invoice_number number,
|
181 |
+
shipment_tracking_number text,
|
182 |
+
shipment_date time);
|
183 |
+
|
184 |
+
CREATE TABLE Shipment_Items (
|
185 |
+
shipment_id number,
|
186 |
+
order_item_id number);
|
187 |
+
```
|
188 |
+
|
189 |
+
### Questions
|
190 |
+
What are the email address, town and county of the customers who are of the least common gender?
|
191 |
+
```sql
|
192 |
+
SELECT email_address , town_city , county FROM customers GROUP BY gender_code ORDER BY count(*) ASC LIMIT 1
|
193 |
+
```
|
194 |
+
|
195 |
+
What are the product price and the product size of the products whose price is above average?
|
196 |
+
```sql
|
197 |
+
SELECT product_price , product_size FROM products WHERE product_price > (SELECT avg(product_price) FROM products)
|
198 |
+
```
|
199 |
+
|
200 |
+
Which customers did not make any orders? List the first name, middle initial and last name.
|
201 |
+
```sql
|
202 |
+
SELECT T1.customer_first_name , T1.customer_middle_initial , T1.customer_last_name FROM Customers AS T1 WHERE T1.customer_id NOT IN (SELECT T2.customer_id FROM Orders AS T2)
|
203 |
+
```
|
204 |
+
|
205 |
+
### Team
|
206 |
+
Avi Kothari, Pratham Gupta, Ritvik Aryan Kalra, Rohan Bhatial, Soham Acharya
|