File size: 9,112 Bytes
276fb4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
base_model: BEE-spoke-data/smol_llama-101M-GQA-python
datasets:
- BEE-spoke-data/pypi_clean-deduped
inference: false
language:
- en
license: apache-2.0
metrics:
- accuracy
model_creator: BEE-spoke-data
model_name: smol_llama-101M-GQA-python
pipeline_tag: text-generation
quantized_by: afrideva
source_model: BEE-spoke-data/smol_llama-101M-GQA
tags:
- python
- codegen
- markdown
- smol_llama
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: Add Numbers Function
  text: "def add_numbers(a, b):\n    return\n"
- example_title: Car Class
  text: "class Car:\n    def __init__(self, make, model):\n        self.make = make\n
    \       self.model = model\n\n    def display_car(self):\n"
- example_title: Pandas DataFrame
  text: 'import pandas as pd

    data = {''Name'': [''Tom'', ''Nick'', ''John''], ''Age'': [20, 21, 19]}

    df = pd.DataFrame(data).convert_dtypes()

    # eda

    '
- example_title: Factorial Function
  text: "def factorial(n):\n    if n == 0:\n        return 1\n    else:\n"
- example_title: Fibonacci Function
  text: "def fibonacci(n):\n    if n <= 0:\n        raise ValueError(\"Incorrect input\")\n
    \   elif n == 1:\n        return 0\n    elif n == 2:\n        return 1\n    else:\n"
- example_title: Matplotlib Plot
  text: 'import matplotlib.pyplot as plt

    import numpy as np

    x = np.linspace(0, 10, 100)

    # simple plot

    '
- example_title: Reverse String Function
  text: "def reverse_string(s:str) -> str:\n    return\n"
- example_title: Palindrome Function
  text: "def is_palindrome(word:str) -> bool:\n    return\n"
- example_title: Bubble Sort Function
  text: "def bubble_sort(lst: list):\n    n = len(lst)\n    for i in range(n):\n        for
    j in range(0, n-i-1):\n"
- example_title: Binary Search Function
  text: "def binary_search(arr, low, high, x):\n    if high >= low:\n        mid =
    (high + low) // 2\n        if arr[mid] == x:\n            return mid\n        elif
    arr[mid] > x:\n"
---
# BEE-spoke-data/smol_llama-101M-GQA-python-GGUF

Quantized GGUF model files for [smol_llama-101M-GQA-python](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA-python) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [smol_llama-101m-gqa-python.fp16.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.fp16.gguf) | fp16 | None  |
| [smol_llama-101m-gqa-python.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q2_k.gguf) | q2_k | None  |
| [smol_llama-101m-gqa-python.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q3_k_m.gguf) | q3_k_m | None  |
| [smol_llama-101m-gqa-python.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q4_k_m.gguf) | q4_k_m | None  |
| [smol_llama-101m-gqa-python.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q5_k_m.gguf) | q5_k_m | None  |
| [smol_llama-101m-gqa-python.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q6_k.gguf) | q6_k | None  |
| [smol_llama-101m-gqa-python.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-101M-GQA-python-GGUF/resolve/main/smol_llama-101m-gqa-python.q8_0.gguf) | q8_0 | None  |



## Original Model Card:
# smol_llama-101M-GQA: python

> 400MB of buzz: pure Python programming nectar! ๐Ÿฏ

This model is the general pre-trained checkpoint `BEE-spoke-data/smol_llama-101M-GQA` trained on a deduped version of `pypi` for +1 epoch. Play with the model in [this demo space](https://huggingface.co/spaces/BEE-spoke-data/beecoder-playground).

- Its architecture is the same as the base, with some new Python-related tokens added to vocab prior to training.
- It can generate basic Python code and markdown in README style, but will struggle with harder planning/reasoning tasks
- This is an experiment to test the abilities of smol-sized models in code generation; meaning **both** its capabilities and limitations

Use with care & understand that there may be some bugs ๐Ÿ› still to be worked out.

## Usage 

๐Ÿ“Œ Be sure to note:

1. The model uses the "slow" llama2 tokenizer. Set use_fast=False when loading the tokenizer.
2. Use transformers library version 4.33.3 due to a known issue in version 4.34.1 (_at time of writing_)

> Which llama2 tokenizer the API widget uses is an age-old mystery, and may cause minor whitespace issues (widget only).

To install the necessary packages and load the model:

```python
# Install necessary packages
# pip install transformers==4.33.3 accelerate sentencepiece

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(
    "BEE-spoke-data/smol_llama-101M-GQA-python",
    use_fast=False,
)
model = AutoModelForCausalLM.from_pretrained(
    "BEE-spoke-data/smol_llama-101M-GQA-python",
    device_map="auto",
)

# The model can now be used as any other decoder
```

### longer code-gen example


Below is a quick script that can be used as a reference/starting point for writing your own, better one :)



<details>
<summary>๐Ÿ”ฅ Unleash the Power of Code Generation! Click to Reveal the Magic! ๐Ÿ”ฎ</summary>

Are you ready to witness the incredible possibilities of code generation? ๐Ÿš€. Brace yourself for an exceptional journey into the world of artificial intelligence and programming. Observe a script that will change the way you create and finalize code.

This script provides entry to a planet where machines can write code with remarkable precision and imagination. 

```python
"""
simple script for testing model(s) designed to generate/complete code

See details/args with the below. 
    python textgen_inference_code.py --help
"""
import logging
import random
import time
from pathlib import Path

import fire
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

logging.basicConfig(format="%(levelname)s - %(message)s", level=logging.INFO)


class Timer:
    """
    Basic timer utility.
    """

    def __enter__(self):

        self.start_time = time.perf_counter()
        return self

    def __exit__(self, exc_type, exc_value, traceback):

        self.end_time = time.perf_counter()
        self.elapsed_time = self.end_time - self.start_time
        logging.info(f"Elapsed time: {self.elapsed_time:.4f} seconds")


def load_model(model_name, use_fast=False):
    """ util for loading model and tokenizer"""
    logging.info(f"Loading model: {model_name}")
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=use_fast)
    model = AutoModelForCausalLM.from_pretrained(
        model_name, torch_dtype="auto", device_map="auto"
    )
    model = torch.compile(model)
    return tokenizer, model


def run_inference(prompt, model, tokenizer, max_new_tokens: int = 256):
    """
    run_inference

    Args:
        prompt (TYPE): Description
        model (TYPE): Description
        tokenizer (TYPE): Description
        max_new_tokens (int, optional): Description

    Returns:
        TYPE: Description
    """
    logging.info(f"Running inference with max_new_tokens={max_new_tokens} ...")
    with Timer() as timer:
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            min_new_tokens=8,
            renormalize_logits=True,
            no_repeat_ngram_size=8,
            repetition_penalty=1.04,
            num_beams=4,
            early_stopping=True,
        )
    text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    logging.info(f"Output text:\n\n{text}")
    return text


def main(
    model_name="BEE-spoke-data/smol_llama-101M-GQA-python",
    prompt:str=None,
    use_fast=False,
    n_tokens: int = 256,
):
    """Summary

    Args:
        model_name (str, optional): Description
        prompt (None, optional): specify the prompt directly (default: random choice from list)
        n_tokens (int, optional): max new tokens to generate
    """
    logging.info(f"Inference with:\t{model_name}, max_new_tokens:{n_tokens}")

    if prompt is None:
        prompt_list = [
            '''
            def print_primes(n: int):
               """
               Print all primes between 1 and n
               """''',
            "def quantum_analysis(",
            "def sanitize_filenames(target_dir:str, recursive:False, extension",
        ]
        prompt = random.SystemRandom().choice(prompt_list)

    logging.info(f"Using prompt:\t{prompt}")

    tokenizer, model = load_model(model_name, use_fast=use_fast)

    run_inference(prompt, model, tokenizer, n_tokens)


if __name__ == "__main__":
    fire.Fire(main)
```

Wowoweewa!! It can create some file cleaning utilities.


</details>


---