Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BEE-spoke-data/smol_llama-220M-bees-internal
|
3 |
+
datasets:
|
4 |
+
- BEE-spoke-data/bees-internal
|
5 |
+
inference: false
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: apache-2.0
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model_creator: BEE-spoke-data
|
12 |
+
model_name: smol_llama-220M-bees-internal
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
quantized_by: afrideva
|
15 |
+
tags:
|
16 |
+
- generated_from_trainer
|
17 |
+
- gguf
|
18 |
+
- ggml
|
19 |
+
- quantized
|
20 |
+
- q2_k
|
21 |
+
- q3_k_m
|
22 |
+
- q4_k_m
|
23 |
+
- q5_k_m
|
24 |
+
- q6_k
|
25 |
+
- q8_0
|
26 |
+
widget:
|
27 |
+
- example_title: Queen Excluder
|
28 |
+
text: In beekeeping, the term "queen excluder" refers to
|
29 |
+
- example_title: Increasing Honey Production
|
30 |
+
text: One way to encourage a honey bee colony to produce more honey is by
|
31 |
+
- example_title: Lifecycle of a Worker Bee
|
32 |
+
text: The lifecycle of a worker bee consists of several stages, starting with
|
33 |
+
- example_title: Varroa Destructor
|
34 |
+
text: Varroa destructor is a type of mite that
|
35 |
+
- example_title: Beekeeping PPE
|
36 |
+
text: In the world of beekeeping, the acronym PPE stands for
|
37 |
+
- example_title: Robbing in Beekeeping
|
38 |
+
text: The term "robbing" in beekeeping refers to the act of
|
39 |
+
- example_title: Role of Drone Bees
|
40 |
+
text: 'Question: What''s the primary function of drone bees in a hive?
|
41 |
+
|
42 |
+
Answer:'
|
43 |
+
- example_title: Honey Harvesting Device
|
44 |
+
text: To harvest honey from a hive, beekeepers often use a device known as a
|
45 |
+
- example_title: Beekeeping Math Problem
|
46 |
+
text: 'Problem: You have a hive that produces 60 pounds of honey per year. You decide
|
47 |
+
to split the hive into two. Assuming each hive now produces at a 70% rate compared
|
48 |
+
to before, how much honey will you get from both hives next year?
|
49 |
+
|
50 |
+
To calculate'
|
51 |
+
- example_title: Swarming
|
52 |
+
text: In beekeeping, "swarming" is the process where
|
53 |
+
---
|
54 |
+
# BEE-spoke-data/smol_llama-220M-bees-internal-GGUF
|
55 |
+
|
56 |
+
Quantized GGUF model files for [smol_llama-220M-bees-internal](https://huggingface.co/BEE-spoke-data/smol_llama-220M-bees-internal) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
|
57 |
+
|
58 |
+
|
59 |
+
| Name | Quant method | Size |
|
60 |
+
| ---- | ---- | ---- |
|
61 |
+
| [smol_llama-220m-bees-internal.fp16.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.fp16.gguf) | fp16 | 436.50 MB |
|
62 |
+
| [smol_llama-220m-bees-internal.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q2_k.gguf) | q2_k | 94.43 MB |
|
63 |
+
| [smol_llama-220m-bees-internal.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q3_k_m.gguf) | q3_k_m | 114.65 MB |
|
64 |
+
| [smol_llama-220m-bees-internal.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q4_k_m.gguf) | q4_k_m | 137.58 MB |
|
65 |
+
| [smol_llama-220m-bees-internal.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q5_k_m.gguf) | q5_k_m | 157.91 MB |
|
66 |
+
| [smol_llama-220m-bees-internal.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q6_k.gguf) | q6_k | 179.52 MB |
|
67 |
+
| [smol_llama-220m-bees-internal.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-220M-bees-internal-GGUF/resolve/main/smol_llama-220m-bees-internal.q8_0.gguf) | q8_0 | 232.28 MB |
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
## Original Model Card:
|
72 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
73 |
+
should probably proofread and complete it, then remove this comment. -->
|
74 |
+
|
75 |
+
# smol_llama-220M-bees-internal
|
76 |
+
|
77 |
+
This model is a fine-tuned version of [BEE-spoke-data/smol_llama-220M-GQA](https://huggingface.co/BEE-spoke-data/smol_llama-220M-GQA) on the None dataset.
|
78 |
+
It achieves the following results on the evaluation set:
|
79 |
+
- Loss: 2.6892
|
80 |
+
- Accuracy: 0.4610
|
81 |
+
|
82 |
+
## Model description
|
83 |
+
|
84 |
+
More information needed
|
85 |
+
|
86 |
+
## Intended uses & limitations
|
87 |
+
|
88 |
+
More information needed
|
89 |
+
|
90 |
+
## Training and evaluation data
|
91 |
+
|
92 |
+
More information needed
|
93 |
+
|
94 |
+
## Training procedure
|
95 |
+
|
96 |
+
### Training hyperparameters
|
97 |
+
|
98 |
+
The following hyperparameters were used during training:
|
99 |
+
- learning_rate: 0.0001
|
100 |
+
- train_batch_size: 4
|
101 |
+
- eval_batch_size: 2
|
102 |
+
- seed: 27634
|
103 |
+
- gradient_accumulation_steps: 8
|
104 |
+
- total_train_batch_size: 32
|
105 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
|
106 |
+
- lr_scheduler_type: cosine
|
107 |
+
- lr_scheduler_warmup_ratio: 0.05
|
108 |
+
- num_epochs: 2.0
|
109 |
+
|
110 |
+
### Training results
|
111 |
+
|
112 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
113 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
114 |
+
| 3.0959 | 0.1 | 50 | 2.9671 | 0.4245 |
|
115 |
+
| 2.9975 | 0.19 | 100 | 2.8691 | 0.4371 |
|
116 |
+
| 2.8938 | 0.29 | 150 | 2.8271 | 0.4419 |
|
117 |
+
| 2.9027 | 0.39 | 200 | 2.7973 | 0.4457 |
|
118 |
+
| 2.8983 | 0.49 | 250 | 2.7719 | 0.4489 |
|
119 |
+
| 2.8789 | 0.58 | 300 | 2.7519 | 0.4515 |
|
120 |
+
| 2.8672 | 0.68 | 350 | 2.7366 | 0.4535 |
|
121 |
+
| 2.8369 | 0.78 | 400 | 2.7230 | 0.4558 |
|
122 |
+
| 2.8271 | 0.88 | 450 | 2.7118 | 0.4569 |
|
123 |
+
| 2.7775 | 0.97 | 500 | 2.7034 | 0.4587 |
|
124 |
+
| 2.671 | 1.07 | 550 | 2.6996 | 0.4592 |
|
125 |
+
| 2.695 | 1.17 | 600 | 2.6965 | 0.4598 |
|
126 |
+
| 2.6962 | 1.27 | 650 | 2.6934 | 0.4601 |
|
127 |
+
| 2.6034 | 1.36 | 700 | 2.6916 | 0.4605 |
|
128 |
+
| 2.716 | 1.46 | 750 | 2.6901 | 0.4609 |
|
129 |
+
| 2.6968 | 1.56 | 800 | 2.6896 | 0.4608 |
|
130 |
+
| 2.6626 | 1.66 | 850 | 2.6893 | 0.4609 |
|
131 |
+
| 2.6881 | 1.75 | 900 | 2.6891 | 0.4610 |
|
132 |
+
| 2.7339 | 1.85 | 950 | 2.6891 | 0.4610 |
|
133 |
+
| 2.6729 | 1.95 | 1000 | 2.6892 | 0.4610 |
|
134 |
+
|
135 |
+
|
136 |
+
### Framework versions
|
137 |
+
|
138 |
+
- Transformers 4.36.2
|
139 |
+
- Pytorch 2.1.0
|
140 |
+
- Datasets 2.16.1
|
141 |
+
- Tokenizers 0.15.0
|